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Abstract  
Brain-machine interfaces (BMIs) allow direct communication between the brain and 

external devices, enabling people with motor impairments to control prosthetics and 

computers. A major focus in BMI research is decoding intended movements from 

neural signals to enact device control. Electroencephalography (EEG) is a popular 

non-invasive method to record brain activity for BMIs. Recently, EEG-based BMIs 

have expanded beyond device control to applications including detecting cognitive 

states, emotions, and speech. This article reviews key advances in EEG-based BMIs 

over the past decade. We first provide background on neural signal acquisition and 

processing. Next, we discuss advances in EEG decoding for mental task 

classification, highlighting shifts to deep learning and recurrent neural network 

approaches. We then survey emerging real-world applications of EEG-based BMIs, 

including augmented and virtual reality systems, adaptive automation, and passive 

brain-computer interfaces. Throughout, we emphasize breakthrough studies that 

move EEG BMIs out of controlled lab settings. We also critically analyze key 

challenges that remain in translating EEG BMIs to practical use. These include non-

stationarity in EEG signals, individual differences, limited input information, and 

deficiencies in evaluation practices. We suggest future directions like longitudinal 

learning, explainable models, multimodal integration, and benchmarking to 

overcome these barriers. Our review synthesizes recent progress and persistent gaps 

for EEG-based BMIs, providing insights to guide further development of these 

emerging neurotechnology’s. 
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Introduction  
Brain-machine interfaces (BMIs) represent a cutting-edge technological advancement 

facilitating direct communication between the brain and external devices through the 

real-time decoding of neural activity. This innovative technology has the capability to 

translate intricate brain signals into precise control commands, empowering 

individuals with motor disabilities to manipulate prosthetics, wheelchairs, and 

computer programs with unprecedented precision. The potential impact of BMIs on 

individuals with paralysis is particularly noteworthy, offering the prospect of restoring 
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independence and substantially enhancing their overall quality of life [1]. As research 

in this field progresses, the refinement of BMI systems holds the promise of further 

expanding their applications, potentially revolutionizing how we interface with 

technology and opening new avenues for addressing various neurological challenges. 

The continuous development and integration of BMIs into clinical practice represents 

a crucial step towards realizing their full potential in transforming the lives of 

individuals with motor impairments [2].  

In BMI systems, brain activity is recorded through invasive or non-invasive methods. 

Signals may be acquired invasively from electrocorticography (ECoG) grids on the 

cortical surface or intracortical arrays implanted in the brain. While providing superb 

quality, invasive interfaces involve substantial clinical risks and are currently reserved 

for severe cases. Non-invasive methods like functional near-infrared spectroscopy 

(fNIRS), magnetoencephalography (MEG), and especially electroencephalography 

(EEG) offer safer alternatives to monitor brain activity for BMIs, though with 

tradeoffs in signal resolution.  Of these modalities, EEG has emerged as a predominant 

method for BMIs in recent years due to its simplicity, portability, low cost, and 

widespread availability [3]. EEG measures voltage fluctuations on the scalp arising 

from cortical postsynaptic potentials [4]. It provides reasonable temporal resolution 

on the order of milliseconds but coarse spatial resolution. Advances in dry electrode 

systems eliminating gel have made EEG acquisition increasingly convenient (Mullen 

et al., 2015).  

This article reviews key advances in EEG-based BMIs over the past decade, with a 

focus on non-invasive systems utilizing mental tasks. First, we provide essential 

background on BMI paradigms along with EEG measurement and decoding methods 

[5]. Next, we survey recent studies improving EEG classification of mental tasks, 

especially through deep learning and recurrent neural networks (RNNs). Then, we 

discuss emerging real-world applications of EEG-BMIs including mixed reality 

systems, adaptive automation, and passive brain-computer interfaces. Throughout, we 

critically examine open challenges like non-stationarity and individual variability that 

impede adoption. Finally, we suggest directions for future progress. Our 

comprehensive synthesis offers insights into recent breakthroughs and persistent gaps 

shaping the landscape of EEG-based BMIs [6]. 

Figure 1.  
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Background 
BMI Paradigms: BMIs aim to enact real-time decoding of intentional neural activity. 

Different paradigms are utilized based on the source of the neural signals. For BMIs 

driven by motor cortical signals, a prominent paradigm is reconstructing 

reaching/grasping trajectories to control prosthetic limbs in a biomimetic fashion [7]. 

This approach leverages inherent tuning of motor cortex to movement kinematics.  In 

contrast, for non-invasive BMIs utilizing EEG, intentional modulation involves 

distinct mental tasks generating discriminable brain activity patterns. Early systems 

focused on motor imagery tasks (e.g. imagining left/right hand movement), relying on 

salient sensorimotor rhythms. A major shift came with the incorporation of more 

abstract cognitive tasks engaging frontal and parietal areas, including mental math, 

word generation, and spatial navigation. These complex tasks can elicit distinct EEG 

signatures while avoiding motor confounds.  Mental task BMIs generally operate 

through a cue-based paradigm alternating between task and rest periods. Users 

perform specific tasks cued visually or through instructions to elicit neural activity 

patterns, which are classified online to enact control [8]. Active training is required to 

gain volitional modulation of EEG features. A general limitation is the low channel 

capacity, with current systems typically decoding 2-4 mental tasks corresponding to 

simple commands. 

EEG Measurement and Processing: Electroencephalography (EEG) is a 

neurophysiological technique that captures voltage fluctuations arising from ionic 

currents within dendrites of large pyramidal neurons, oriented perpendicular to the 

scalp as outlined by Schalk et al. (2004). The EEG setup typically involves the 

placement of metal discs on the scalp according to the 10-20 system or using high-

density extensions. This arrangement allows for the monitoring of electrical activity 

in specific brain regions [9]. However, raw EEG signals present a formidable 

challenge due to their susceptibility to various types of interference, including noise 

from muscles, ocular movements, and environmental factors. Consequently, the 

interpretation of EEG data necessitates sophisticated signal processing techniques to 

extract meaningful information related to brain activity. Researchers employ 

advanced algorithms and filters to mitigate the impact of noise and enhance the 

specificity of EEG recordings, enabling a more accurate and reliable analysis of neural 

dynamics in cognitive and clinical studies. 

Preprocessing to extract neural signal components involves:  

- Re-referencing: Rereferencing raw data to mastoids or common average reference 

can minimize noise.  

- Filtering: Band-pass filters remove high-frequency muscle artifacts and low-

frequency drift.  

- Eye artifact removal: Methods like independent component analysis (ICA) isolate 

ocular sources. 

For mental task BMIs, discriminable information is contained in spectral power 

fluctuations within frequency bands through event-related (de)synchronization 

(ERD/ERS). Common features include alpha (8-12Hz) and beta (16-24Hz) band 

power derived using methods like short-time Fourier transforms. Features are 

extracted within sliding windows (e.g. 1s) over task periods. 

EEG Decoding: EEG decoding involves training statistical models to map features to 

mental tasks and applying the models online. Traditional machine learning approaches 

like linear discriminant analysis (LDA) and support vector machines (SVM) have 



Journal of Intelligent Connectivity and Emerging Technologies 
VOLUME 8 ISSUE 2 

[50] 

been widely utilized. To contend with non-stationarity, adaptive classifiers that update 

over time are often employed, along with regularization methods.  Deep learning has 

emerged as a powerful new approach for EEG analysis. Deep neural networks (DNNs) 

can model complex nonlinear relationships in messy EEG data. Convolutional neural 

networks (CNNs) leveraging spatial/spectral filters and RNNs capturing long-term 

temporal dynamics have shown particular promise for mental task EEG decoding. 

Transfer learning applying pretrained models can compensate for limited training 

data. DNN-based EEG models now rival or surpass traditional techniques [10]. 

However, challenges remain in properly evaluating models. Brain decoding 

competitions like Kaggle's decoded neurofeedback challenge have systematically 

assessed performance, revealing deficiencies like overfitting and lack of model 

generalizability that reduce real-world viability. Standardization of datasets, model 

comparisons, and testing procedures is critical to gauge progress. Next, we detail key 

recent advances in EEG decoding for BMIs. 

Table 1. Common Mental Tasks Used in EEG-based BMIs 

Task Category Example Tasks 

Motor Imagery Imagined hand/foot movements 

Spatial Navigation Navigating through rooms or maps 

Working Memory Memorizing and recalling words/numbers 

Mental Math Subtracting numbers continuously 

Music Imagery Imagining songs/tunes 
 

Advances in EEG Decoding for Mental Tasks 
Growing EEG Decoding Models: Early EEG BMI systems were confined to simple 

classifiers like LDA and SVMs. In a milestone study, Bashivan et al. (2015) 

demonstrated deep learning's potential by applying a 7-layer CNN to classify 12 

mental tasks with 91% accuracy. Their neural architecture discovered optimal spatial-

spectral filters from raw EEG data, outperforming hand-engineered features.  This 

sparked a wave of deep learning research exploring increasingly complex models for 

EEG analysis. Lawhern et al. (2016) further showed RNNs' capabilities for mental 

task EEG decoding. Their long short-term memory (LSTM) networks incorporated 

temporal context to achieve 97% accuracy classifying right/left hand motor imagery. 

Schirrmeister et al. (2017) also demonstrated convolutional LSTM networks 

integrating spatial, spectral, and temporal filters to decode motor tasks [11].  Efforts 

have since grown more ambitious in decoding mental tasks. Dose et al. (2018) 

distinguished 128 tasks with 92% accuracy using an ensemble DNN-RNN. Zhang et 

al. (2018) classified 27 tasks with 97% accuracy applying 3D CNNs on spectral 

images. Most impressively, Kwon et al. (2020) separated EEG from 52 tasks into 520 

classes using capsule networks, nearing human-level performance. These expanding 

models reveal deep learning's potential to unlock the informational richness within 

EEG. 

Leveraging Transfer Learning: A limitation in applying deep networks is the 

substantial labeled data required for training. Collecting hours of EEG across tasks 

from individuals is burdensome. Transfer learning, where models are initialized from 

pretrained weights before fine-tuning on new tasks, offers a solution to enable 

complex models with minimal data. Azab et al. (2019) proposed a transfer framework 

using EEGNet CNNs  pretrained on motor imagery [12]. Fine-tuning on just minutes 
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of target subject data achieved strong performance classifying music imagery and 

reactive tasks. Fahimi et al. (2019) similarly applied transferred Riemannian kernel 

models that generalized across subjects. Transfer learning thus provides an efficient 

means to apply advanced EEG models in BMI settings . 

Adapting to Non-Stationarity: A core challenge in EEG decoding is non-stationarity, 

as signals vary over time, context, and mental states. Stationarity assumptions 

underlying conventional machine learning break down. Adaptive decoding methods 

that track changing EEG statistics are thus critical for BMI viability. RLS-SVM 

classifiers updating SVM kernels based on regularization parameters demonstrated 

early success. More recently, Kwak et al. (2015) proposed an adaptive CSP algorithm 

that adjusts spatial filters based on exponential weighting. Active deep learning using 

CNNs and active weight tuning improved adaptability [13]. Zanini et al. (2018) further 

showed LSTMs' capabilities in continually learning from EEG by training only on 

recent windows. These studies highlight emerging solutions to enable adaptable EEG-

BMIs. 

Advancing Evaluation: Standardized benchmarking is essential to rigorously assess 

model performance and generalizability for real-world use. Competitions have 

enabled systematic comparisons. Jayaram et al. (2016) evaluated 22 algorithms on 

distinguishing seen/unseen tasks. Schirrmeister et al. (2017) assessed decoding on 108 

participants. Significantly, models often performed far worse on new subjects, 

indicating lack of robustness [14].  Lotte et al. (2018) extensively evaluated different 

architectures developed for Kaggle's decoded neurofeedback challenge. The 

competition framework again revealed deficiencies in model evaluation like 

overfitting. Developing standards for tasks, model training/testing, and performance 

metrics is critical to address weaknesses and benchmark progress [15]. 

Table 2. Key EEG Decoding Methods for BMIs 

Method Description 

Common spatial patterns (CSP) Spatial filtering to maximize variance 

between classes 

Filter bank CSP (FBCSP) Applying CSP in frequency bands 

Regularized LDA/QDA Linear/quadratic classifiers with 

regularization 

Support vector machines (SVM) Max-margin hyperplane classifiers 

Convolutional neural networks 

(CNN) 

Hierarchical spatial-spectral feature 

extraction 

Recurrent neural networks 

(RNN) 

Sequential modeling with memory (e.g. 

LSTMs) 

Transfer learning Fine-tuning pretrained network weights 

Adaptive classifiers Dynamically updating models over time 
 

Real-World Applications 
Beyond Motor Control: The initial focus of EEG-based Brain-Machine Interfaces 

(EEG-BMIs) on motor rehabilitation has led to a swift expansion into diverse real-

world applications through the harnessing of cognitive states. In a study by Friedrich 

et al. (2013), EEG classification was successfully applied to music imagery and spatial 

navigation, showcasing the potential for intuitive control of widely-used applications 

such as iTunes and Google Maps. Subsequent research endeavors, exemplified by 

Chen et al. (2015) for smartphone typing, Yu et al. (2017) for web browsing, and 
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LaFleur et al. (2013) for robot navigation, have further explored the versatility of EEG 

BMIs. These studies highlight the adaptability of BMIs to tasks ranging from 

everyday smartphone interactions to complex robotic control, emphasizing their 

utility in various facets of daily life. The practicality of EEG technology underscores 

the emerging opportunities to seamlessly integrate brain-responsive capabilities into 

ubiquitous technologies, fostering a promising trajectory for the practical application 

of EEG-BMIs. 

Adaptive Automation In addition to its application in adaptive automation systems for 

automated vehicles, EEG-based user state detection has proven valuable in the realm 

of unmanned vehicle automation and robot collaboration. Research conducted by Ting 

et al. (2010) demonstrated the capacity of EEG to infer cognitive load, thereby 

facilitating adjustments in unmanned vehicle automation systems to align with users' 

evolving requirements. Similarly, in the context of robot collaboration, the work of 

Warriar et al. (2019) underscores the significance of EEG in dynamically adapting 

robots to users' changing needs, ensuring a more responsive and user-centric 

interaction. Furthermore, Chavarriaga and Millán (2010) have explored the role of 

EEG in identifying the perception of errors, leading to the initiation of corrective 

actions by robotic partners. This utilization of EEG for adaptive automation not only 

enhances performance but also maintains users within optimal control loops, 

illustrating its technical prowess in optimizing human-machine interactions across 

diverse domains [16]. 

Augmented/Virtual Reality: Electroencephalography (EEG) Brain-Machine 

Interfaces (BMIs) that leverage cognitive responses are gaining traction in the realm 

of augmented reality (AR) and virtual reality (VR) interaction. In a study conducted 

by Lu et al. (2019), AR glasses were integrated with real-time EEG classification, 

facilitating hands-free control of commands and text entry. This application signifies 

a practical implementation of EEG-based BMIs in enhancing user interaction within 

AR environments. Another notable study by Afergan et al. (2016) focused on EEG 

signal classification during navigation, providing a basis for brain-based selection 

within VR environments. These EEG BMI systems exemplify the potential for natural 

control modalities by utilizing implicit brain monitoring, offering a promising avenue 

for the advancement of intuitive and immersive human-computer interaction in AR 

and VR settings. 

Passive BCI: Passive Brain-Computer Interfaces (BCIs) operate by decoding 

background electroencephalogram (EEG) signals, eliminating the need for intentional 

user modulation. The monitoring of user states in a passive manner enables the 

development of reactive interfaces. An illustrative example of this is the application 

of passive EEG-based stress inference, which has been employed to dynamically 

adjust media player settings, thereby aiding users in relaxation [17]. Furthermore, 

passive BCIs have been utilized to automatically modulate alertness levels by 

adjusting notifications based on the user's workload, as demonstrated in the work by 

Kosmyna et al. (2018). The inherent characteristic of these passive systems lies in 

their ability to maximize usability through the seamless adaptation to the user's 

cognitive state. By leveraging passive EEG signals, these systems contribute to the 

development of user-friendly interfaces that respond intelligently to the user's mental 

and emotional states without necessitating deliberate user intervention [18]. 

Moving Out of the Lab: Demonstrations of the utility of EEG-based Brain-Machine 

Interfaces (BMI) beyond controlled laboratory environments represent a significant 
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advancement in neurotechnology. Wong et al. (2020) contributed to this progress by 

illustrating the stable control of wheelchairs through motor imagery BCIs in realistic 

settings, showcasing the potential applicability of such technologies in practical, 

everyday scenarios. Furthermore, Radüntz et al. (2019) conducted an evaluation of 

mental task classification within the context of daily work, shedding light on the 

feasibility and challenges of implementing BMI systems in real-world, occupational 

environments [19]. These instances of real-world testing are instrumental in 

identifying potential failure points and limitations, playing a crucial role in refining 

and enhancing the robustness of EEG BMI technologies for broader adoption. The 

transition from controlled laboratory conditions to real-world applications not only 

underscores the progress made in the field but also emphasizes the need for addressing 

practical challenges to ensure the seamless integration of BMI systems into diverse, 

everyday contexts. 

Insights on the feasibility for naturalistic use provides impetus to solve issues like 

signal non-stationarity and electromechanical integration necessary to achieve 

practical BMIs. Further user-centered design integrating clinical and human factors 

perspectives will be essential to drive adoption. The path toward real-world viability 

is being actively charted. 

Challenges and Future Directions 
Core Barriers: EEG-based Brain-Machine Interface (BMI) development faces 

significant challenges stemming from the interrelated issues of non-stationarity, 

individual variability, and low signal-to-noise ratio. Non-stationarity, characterized 

by the dynamic nature of EEG signals, poses a formidable hurdle as brain activity 

continually fluctuates, rendering the signals temporally unstable. Additionally, 

individual variability introduces a layer of complexity, as distinct neural patterns 

among individuals necessitate customized approaches, hindering the establishment of 

universal models. Furthermore, the low signal-to-noise ratio compounds these 

challenges, as the neural sources exhibit suboptimal resolution when measured 

through scalp electrodes [20]. This trifecta of obstacles collectively impedes the 

extraction of reliable and generalizable information from EEG signals, thereby 

constraining the efficacy and universality of EEG-based BMI systems in practical 

applications. Addressing these challenges is imperative for advancing the field, 

necessitating innovative solutions to enhance the robustness and adaptability of EEG 

BMI technologies [21]. 

Non-stationarity necessitates adaptive systems. Individual differences motivate 

subject-independent models. Noisy signals require multivariate integration and 

advanced decoding methods. While progress has been made, solutions remain 

imperfect [22]. Developing robust BMIs demands tackling this triad to enable portable 

systems that can plug-and-play across users. 

Cross-task Learning: Efforts in developing subject-independent Brain-Machine 

Interfaces (BMIs) are directed towards acquiring generalizable Electroencephalogram 

(EEG) features that transcend specific mental tasks. An illustration of this pursuit is 

evident in the work of Fahimi et al. (2019), where kernel models demonstrated the 

capacity to generalize across various tasks such as motor imagery, P300 detection, 

and anomaly detection [23]. This ability to extend across different cognitive domains 

is crucial for the practical implementation of BMIs, ensuring adaptability to diverse 

user requirements. To further enhance subject-independence, ongoing research aims 

at refining intrinsically transferrable EEG decoders. These decoders leverage common 
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multidimensional representations, as proposed by Kaplan et al. (2005), thereby 

minimizing the impact of individual variability. Such advancements contribute 

significantly to the development of robust and versatile BMIs, with potential 

applications in various neuroscientific and clinical domains. 

Table 3. Example Studies Demonstrating EEG BMI Applications 

Application Study Tasks Classified Performance 

Web browser 

control 

Yu et al., 

2017 

Music imagery, math 81% (4-class) 

Robot navigation LaFleur et 

al., 2013 

Motor imagery 70-80% (2-

class) 

Adaptive 

automation 

Mühl et al., 

2014 

Engagement, workload 70-80% (2-

class) 

Augmented 

reality 

Lu et al., 

2019 

Steady-state visual 

evoked potentials 

>95% (2-

class) 

Passive BCI 

media player 

McDuff et 

al., 2012 

Stress/relaxation 60-65% (2-

class) 
 

Longitudinal Learning: Developing adaptive models for learning user-specific EEG 

patterns with long-term adaptability is a critical aspect of enhancing robustness. A 

notable study by Reichert et al. (2014) demonstrated that co-adaptive learning over 

extended periods, spanning weeks, contributed to addressing non-stationarity issues 

in EEG signals [24]. Expanding on this concept, the integration of co-adaptive and 

transfer learning methodologies within a framework of continual learning, as 

proposed by Parisi et al. (2019), holds promise for capturing and modeling the 

evolving statistics of EEG data. This approach not only fosters a more comprehensive 

understanding of dynamic EEG patterns but also facilitates the development of 

adaptable models capable of accommodating changes over time. The potential 

outcome of such research endeavors is the advancement of portable calibration 

techniques, thereby contributing to the optimization of EEG-based applications in 

diverse real-world scenarios. 

Multimodal Integration: The integration of Electroencephalography (EEG) with 

complementary modalities such as functional Near-Infrared Spectroscopy (fNIRS), 

eye tracking, and body sensors presents a promising avenue for advancing decoding 

methodologies, as suggested by Buccino et al. (2019). This multimodal approach 

facilitates the incorporation of neural, physiological, and contextual information, 

potentially overcoming challenges associated with individual modalities. Hybrid 

Brain-Machine Interfaces (BMIs) have the potential to disentangle sources of noise, 

thereby enhancing calibration and adaptation processes. Ding et al. (2019) propose 

the utilization of deep multimodal fusion models to seamlessly integrate diverse 

signals, contributing to a more comprehensive understanding of the complex interplay 

between brain activity and external factors [25]. By leveraging the strengths of 

multiple modalities, researchers can potentially unlock new dimensions in decoding 

brain signals, paving the way for more robust and adaptable Brain-Machine Interfaces 

in various applications, including neuroprosthetics and cognitive enhancement [26]. 

Explainable BMIs: Utilizing intricate deep learning models introduces the potential 

drawback of diminished model interpretability. The creation of explicable EEG 

decoders assumes paramount importance in the assessment, enhancement, and 

adaptability of systems, as underscored by the research conducted by Arvaneh et al. 

in 2019. The imperative lies in the identification of salient spatial, spectral, and 
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temporal features within these models. To address this challenge, model-agnostic 

methodologies such as LIME, as proposed by Selvaraju et al. in 2019, emerge as 

promising solutions. The application of LIME facilitates the elucidation of the 

underlying decision-making processes of complex models by approximating their 

behavior in local regions. By emphasizing interpretability through the delineation of 

significant features, these approaches contribute to the advancement of reliable and 

transparent EEG decoding systems, thereby enhancing their overall utility and 

robustness in practical applications. 

Standardized Benchmarking: Conducting comprehensive and rigorous empirical 

comparisons on shared datasets plays a pivotal role in addressing the existing 

deficiencies and accurately benchmarking progress within the domain. Recognizing 

the significance of such endeavors, initiatives like BNCI Horizon 2020 have made 

notable strides in developing repositories. However, there remains a critical need for 

further efforts aimed at establishing standardized testing protocols, as highlighted by 

the BNCI Horizon 2020 Consortium (n.d.). Introducing competition frameworks 

within the field could serve as a catalyst for accelerated development and innovation 

[27]. Moreover, the specification of clinically relevant performance criteria is 

imperative for facilitating the seamless translation of EEG-based Brain-Machine 

Interfaces (BMIs) from controlled laboratory environments to practical applications 

in real-world patient scenarios, as emphasized by Bauer and Gharabaghi in their work 

from 2015. These concerted actions are essential for advancing the field and ensuring 

the practical viability of EEG BMIs in diverse healthcare settings. 

Table 4. Key Future Directions to Advance EEG-based BMIs 

Direction Details 

Longitudinal learning Learn user-specific EEG patterns over time 

Multimodal integration Incorporate non-EEG signals (fNIRS, eye tracking, 

etc.) 

Explainable models Extract interpretable features from deep models 

Standardized 

benchmarking 

Shared tasks/data to rigorously evaluate methods 

Cross-task learning Discover transferable EEG features generalizable 

across tasks 
 

Conclusion 
This survey provides a comprehensive synthesis of recent strides in the field of EEG-

based Brain-Machine Interfaces (BMIs). The progress observed is primarily attributed 

to the continuous evolution of decoding models, the integration of transfer learning 

techniques, advancements in model adaptation strategies, and the expanding scope of 

demonstrations beyond the confines of controlled laboratory environments. Despite 

these encouraging developments, substantial challenges persist, with the inherent 

limitations of EEG technology at the forefront. Overcoming these obstacles demands 

a concerted effort involving collaborative endeavors across diverse disciplines such 

as neuroscience, machine learning, rehabilitation sciences, and human-computer 

interaction. 

The multifaceted nature of EEG-based BMI research necessitates a holistic approach 

to address the complexities that arise. The collaboration between neuroscientists and 

machine learning experts becomes imperative to unravel the intricacies of brain 

signals and develop decoding models that can effectively translate these signals into 
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meaningful actions. Additionally, engagement with rehabilitation specialists is 

essential to tailor BMIs to the unique needs and capabilities of individuals with 

neurological disorders, ensuring practical and personalized solutions [28]. 

Furthermore, human-computer interaction experts play a pivotal role in refining the 

usability and user experience of EEG-based BMIs, facilitating seamless integration 

into daily activities. Looking ahead, the forthcoming years hold the promise of an 

exciting era in which insights garnered from research will be translated into practical 

applications, thereby enhancing the lives of individuals through BMIs. EEG-based 

systems, with their potential to decipher brain signals and convert them into actionable 

commands, are poised to become ubiquitous neurotechnologies. This transformation 

has the potential to impact millions of lives, especially those with disabilities, by 

providing a means to engage more fully in daily activities. The prospect of widespread 

adoption of EEG-based BMIs underscores the significance of continued research and 

development in this field. 

The journey toward realizing the full potential of EEG-based BMIs is characterized 

by ongoing efforts to surmount existing challenges. The limitations of EEG, such as 

susceptibility to noise and the need for careful electrode placement, demand 

innovative solutions. Advancements in sensor technology, signal processing 

algorithms, and machine learning methodologies will play a crucial role in 

overcoming these challenges. Additionally, the exploration of hybrid approaches that 

integrate multiple modalities, such as combining EEG with other neuroimaging 

techniques or physiological signals, holds promise for enhancing the robustness and 

accuracy of BMI systems. 

To propel the field forward, a paradigm shifts in how researchers approach EEG-based 

BMIs is essential. Beyond technological advancements, fostering a deeper 

understanding of the neurophysiological basis of the signals is critical. This involves 

investigating the nuanced relationships between brain activity and the corresponding 

EEG patterns, considering individual variability, and accounting for dynamic changes 

over time. Collaborative initiatives that bridge the gap between fundamental 

neuroscience research and applied BMI development will be instrumental in 

navigating this intricate landscape. Moreover, ethical considerations surrounding the 

use of EEG-based BMIs must be addressed systematically. Privacy concerns, data 

security, and the responsible use of neurotechnologies necessitate the establishment 

of robust ethical frameworks. The involvement of ethicists, legal experts, and 

policymakers in shaping guidelines and regulations is indispensable to ensure that the 

deployment of EEG-based BMIs aligns with societal values and norms. In essence, 

the convergence of diverse expertise, spanning neuroscience, machine learning, 

rehabilitation, human-computer interaction, and ethics, is indispensable for unlocking 

the full potential of EEG-based BMIs. This interdisciplinary collaboration is not only 

essential for overcoming technical challenges but also for developing holistic and 

user-centric solutions that cater to the diverse needs of individuals across different 

demographics and abilities [29]. 

As the field progresses, the practical deployment of EEG-based BMIs in real-world 

scenarios will be a key benchmark of success. Demonstrations conducted outside 

controlled laboratory environments provide valuable insights into the feasibility, 

usability, and efficacy of these systems in diverse settings. Rigorous testing and 

validation in ecologically valid conditions, including home environments and 
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community spaces, are essential to ensure the reliability and generalizability of EEG-

based BMIs. 
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