
Citation: Bhaskaran, S. V. Resilient

Real-Time Data Delivery for AI

Summarization in Conversational

Platforms: Ensuring Low Latency,

High Availability, and Disaster

Recovery. JICET 2023, 8, 113–130.

Received: 203-06-18

Revised: 2023-08-08

Accepted: 2023-09-02

Published: 2023-09-12

Copyright: © 2023 by the authors.

Submitted to JICET for possible open

access publication under the terms and

conditions of the Creative Commons

Attri- bution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Resilient Real-Time Data Delivery for AI Summarization in
Conversational Platforms: Ensuring Low Latency, High
Availability, and Disaster Recovery
Shinoy Vengaramkode Bhaskaran 1

1 Senior Big Data Engineering Manager, Zoom Video Communications.

Abstract: As conversational artificial intelligence (AI) agents become integral components of com-
munication platforms the need for reliable and timely data delivery to AI summarization engines is
paramount. This is true in the case of many domains from real-time customer support to interactive
tutoring systems. Ensuring that conversational transcripts, user queries, and contextual metadata
flow to summarization models with minimal latency and high fault tolerance is critical to maintaining
seamless user experiences. This paper presents a comprehensive system design and technical strate-
gies for achieving resilient real-time data delivery. We focus on architectural principles, low-latency
data pipelines, fault-tolerant components, and disaster recovery mechanisms. By combining scalable
streaming frameworks, distributed consensus protocols, geo-redundant storage, and active-active
failover techniques, we demonstrate that it is feasible to maintain continuous availability, even in
the face of network partitions and data center outages. Experimental evaluations on a prototypical
testbed show our approach can maintain sub-100ms latency targets, minimize downtime under
failure scenarios, and recover state swiftly and accurately.

Keywords: active-active failover, conversational AI, fault tolerance, low-latency pipelines, real-time
data delivery, resilient system design, summarization engines

1. Introduction

Conversational AI platforms have become an integral part of modern communication,
finding applications in diverse domains such as customer service chatbots, voice-based
virtual assistants, and collaborative business tools. These platforms rely heavily on ad-
vanced natural language processing (NLP) models to analyze user inputs and provide
concise, contextually accurate summaries of discussions in real-time. The ability of these
summarization engines to deliver high-quality and relevant summaries is directly influ-
enced by the performance, scalability, and fault tolerance of the underlying data delivery
and processing infrastructure [1].

In static or offline settings, summarization engines can afford delays in processing
data since there is no immediate user expectation for feedback. However, the situation
is vastly different for interactive and real-time conversational systems. Users engaging
with these systems expect instantaneous feedback and continuously updated insights as
they generate substantial volumes of textual, audio, or multimodal data. Meeting these
stringent latency and responsiveness requirements demands a robust architecture that can
efficiently handle data ingestion, stream processing, summarization, and delivery, all while
ensuring fault tolerance and minimal downtime [1,2].

Failures or disruptions in this infrastructure—whether caused by hardware malfunc-
tions, software bugs, network congestion, or regional outages—can severely impact the
system’s reliability. Such interruptions do not merely degrade the user experience but
also undermine user trust, as they lead to noticeable delays or inaccuracies in generated

Version 2023 submitted to JICET https://questsquare.org/index.php/JOUNALICET

https://doi.org/10.3390/JICET8030001
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://questsquare.org/
https://orcid.org/0009-0008-0726-5403
https://questsquare.org/index.php/JOUNALICET


Version 2023 submitted to JICET 114

Service Provider
(Infrastructure)

User 1 User 2 User 3

Data Delivery
Data Delivery

Data Delivery

Hardware Failure

Software Bug

Regional Outage

Interruption

Degradation

Outage

Diminished
Experience

Eroded
Trust

Revenue
Loss

Figure 1. Visualization of the impact of interruptions or degradation in data delivery caused by
hardware failures, software bugs, or regional outages. The resulting issues directly affect user
experience, trust, and revenue.

summaries. For service providers, these performance lapses can translate to significant
revenue losses, particularly in competitive markets where users have high expectations for
reliability and responsiveness.

The challenges are further exacerbated by the growing scale and complexity of conver-
sational data streams. The ingestion pipelines must accommodate high-throughput data
flows while preserving data order and integrity. Streaming platforms and summarization
engines must balance scalability with low-latency performance, even under sudden traffic
spikes or infrastructure failures. To meet these demands, modern architectures incorpo-
rate cutting-edge technologies such as distributed streaming platforms, transformer-based
language models, containerized microservices, and automated orchestration systems.

2. Challenges in Real-Time Summarization

Attaining real-time and resilient data delivery for AI summarization in distributed
conversational systems presents a multitude of technical challenges. These challenges stem
from the inherent complexity of processing large volumes of data at low latency while
maintaining high availability, scalability, and fault tolerance. This section identifies the key
hurdles that must be addressed to enable robust and efficient summarization in real-time
settings [3,4].

A primary challenge is meeting low latency requirements, which demand that data
ingestion, processing, and delivery to summarization models occur within tens of millisec-
onds. The strict temporal constraints arise from user expectations of immediate feedback,
particularly in interactive settings. Achieving this necessitates overcoming network over-
head, serialization costs, and queuing delays, all of which contribute to latency. Inefficien-
cies in any part of the pipeline can cascade, leading to delays that compromise the user
experience [5–7].



Version 2023 submitted to JICET 115

Another significant hurdle is ensuring high availability and fault tolerance. Distributed
systems are prone to various types of failures, ranging from individual server crashes to
entire data center outages. For conversational AI platforms, even brief interruptions in
the data pipeline can degrade system performance and lead to missing or incomplete
summaries [8,9]. Consequently, maintaining continuous operation requires a fault-tolerant
architecture with redundant components, replication strategies, and mechanisms for seam-
less failover. This ensures that service interruptions are minimized, even in the face of
hardware or software failures.

Disaster recovery poses additional complexities, particularly in the context of large-
scale catastrophic events such as natural disasters or network-wide outages [10,11]. In these
scenarios, both data integrity and service continuity are at risk. Effective disaster recovery
strategies must involve advanced replication mechanisms, geographically distributed
backups, and processes for rapid failover and recovery. Ensuring data durability and
correctness under such conditions is paramount, as these factors directly affect the quality
of summarization outputs.

The need for scalability and elasticity further complicates system design. Conversa-
tional platforms often face unpredictable spikes in traffic, such as during major events or
promotional campaigns [7,8,12]. Handling these dynamic workloads without compromis-
ing performance requires architectures that can scale elastically, provisioning additional
resources during peak loads and scaling down during periods of reduced demand. De-
signing such adaptive systems involves significant challenges in resource allocation and
management [13,14].

This paper addresses these challenges by proposing a resilient and low-latency data
delivery architecture tailored for AI summarization in conversational platforms. Our
primary contributions are as follows:

1. A distributed system design that integrates data ingestion, streaming frameworks,
and AI inference engines, ensuring sub-100ms latency under nominal loads.

2. Techniques for achieving high availability through active-active deployments, load
balancing, and distributed consensus mechanisms to sustain uninterrupted opera-
tions.

3. Disaster recovery strategies that incorporate continuous backup, geo-redundancy, and
rapid failover mechanisms to minimize downtime and mitigate data loss.

4. An evaluation that demonstrates the efficacy of the proposed architecture using
a representative testbed and synthetic workloads, highlighting key performance
metrics.

The remainder of this paper is organized as follows: Section II outlines the proposed
system architecture, detailing its key components, including data ingestion, message
brokering, and integration with summarization engines. Section III focuses on strategies
for latency optimization, addressing challenges in minimizing delays across the data
pipeline. Section IV explores mechanisms for ensuring high availability, fault tolerance,
and disaster recovery, providing a robust foundation for resilient operation. Section V
presents experimental results and performance benchmarks, demonstrating the scalability
and effectiveness of the proposed design.

3. Proposed System Architecture

The proposed system architecture is designed to manage the complexities associated
with collecting, processing, and summarizing large volumes of conversational data in
real-time. It integrates several subsystems, each dedicated to a specific functionality such
as data ingestion, stream processing, summarization, and efficient load balancing. The
architecture is both modular and scalable, ensuring robustness under variable workloads.
The following subsections describe the individual components in detail.



Version 2023 submitted to JICET 116

User Messages
(Chat Rooms)

Transcripts
(Voice Calls)

Metadata
(Interaction Logs)

Scalable Ingestion Layer
Endpoints, Load Balancers, CDNs, Serialization, Buffering

Shared Streaming Backbone

Data
Sources

Ingestion
Layer

Streaming
Backbone

Figure 2. Data Ingestion Layer: Raw conversational data is collected from diverse sources such as
chat rooms, voice call transcripts, and interaction logs. Ingestion endpoints, strategically deployed
near user locations, utilize load balancers and CDNs to minimize latency. Messages are serialized
and buffered before being forwarded to a shared streaming backbone for further processing.

3.1. Data Ingestion Layer

The data ingestion layer serves as the initial entry point for collecting raw conversa-
tional data from heterogeneous sources. These sources include user-generated messages in
chat rooms, voice call transcripts processed through speech-to-text systems, and metadata
logs from customer interaction systems. The ingestion layer employs geographically dis-
tributed endpoints to minimize latency. These endpoints are typically deployed at network
edges and are backed by Content Delivery Networks (CDNs) and load balancers, ensuring
that data is routed to the nearest available ingestion node.

Each ingestion node is equipped with capabilities to serialize and buffer incoming
data streams. The serialization ensures consistent structuring of data, which is critical for
downstream processing, while buffering accommodates temporary spikes in data traffic.
Data packets from ingestion nodes are subsequently forwarded to a central streaming
backbone for distributed processing. The system’s design emphasizes fault tolerance,
with failover mechanisms in place to reroute data if any endpoint or ingestion node fails.
Moreover, the ingestion layer supports a range of data protocols, including REST APIs,
WebSocket streams, and gRPC interfaces, to ensure compatibility with diverse data sources.

3.2. Message Queues and Stream Processing

At the core of the architecture lies the stream processing layer, which relies on high-
performance distributed platforms such as Apache Kafka or Redpanda. These platforms
provide an event-driven backbone that ensures data ordering, durability, and fault tolerance.
Raw conversational data received from the ingestion layer is published to Kafka topics, with
each topic corresponding to a specific type of conversation stream or metadata category.

Partitioning is employed within the stream processing layer to enhance scalability.
Each user session or conversation is assigned to a unique partition, ensuring message
order is preserved within individual sessions while enabling parallel processing across
partitions. Partitions are distributed across multiple brokers within the Kafka cluster and
are replicated to maintain high availability in the event of broker failures. For example, a
replication factor of three ensures that a partition’s data is available even if two brokers fail
simultaneously.

Producers, typically the ingestion nodes, write data into Kafka topics, while consumer
microservices subscribe to these topics for real-time processing. The consumer applications



Version 2023 submitted to JICET 117

Ingestion
Node 1

Ingestion
Node 2

Ingestion
Node 3

Distributed Streaming Platform
(e.g., Apache Kafka, Redpanda)

Partition 1 Partition 2 Partition 3

Pre-Processing
Service 1

Feature Extraction
Service

Summarization
Engine

Producers

Partitions

Consumers

Figure 3. Message Queues and Stream Processing: ingestion nodes, write messages to partitions
within a distributed streaming platform like Apache Kafka or Redpanda. Partitioning ensures
throughput and ordering per conversation or user session. Partitions are replicated across a cluster
for resilience. Consumers, including pre-processing services and summarization engines, subscribe
to streaming topics, performing lightweight transformations before data moves forward.

perform a variety of pre-processing tasks, including feature extraction (e.g., sentiment scores
or named entity recognition), normalization of textual data, and filtering of redundant or
irrelevant information. These transformations are lightweight to ensure minimal processing
delay, enabling near real-time data transmission to the downstream summarization engines.

3.3. Summarization Engine Integration

The summarization engine is the most computationally intensive component of the
architecture. It is implemented as a microservices-based system that transforms processed
conversational data into concise summaries. These microservices are powered by state-
of-the-art transformer-based models, such as GPT-style large language models (LLMs) or
domain-specific pre-trained architectures like BERT. Given the complexity of these models,
the summarization microservices require access to hardware accelerators such as GPUs,
TPUs, or specialized AI inference chips.

To ensure scalability, the summarization services are containerized and deployed in a
Kubernetes-managed environment. This orchestration allows dynamic scaling of resources
in response to workload fluctuations. For instance, during peak traffic periods, additional
instances of the summarization microservices can be spun up to handle the increased load.
The microservices are designed to be stateless, with stateful information (e.g., intermediate
summaries) stored in an external in-memory database like Redis.

A multi-tiered caching mechanism is employed to reduce computational load and
minimize latency. The first tier is an in-memory cache that stores frequently accessed
conversation segments and partial summaries. This enables incremental updates, where
only new conversational elements are processed instead of re-summarizing the entire
conversation history. The second tier is a distributed cache, which retains completed
summaries for faster retrieval by downstream services.



Version 2023 submitted to JICET 118

Processed Data Stream
(Conversational Elements)

Summarization
Microservice 1

(LLM-based)

Summarization
Microservice 2

(LLM-based)

Summarization
Microservice 3

(LLM-based)

Hardware Accelerators
(GPUs, TPUs)

Tiered Caching
(Redis, Incremental Updates)

Summarization Output

Input Stream

AI Microservices

Caching Layer

Figure 4. Summarization Engine Integration: Summarization engines, deployed as microservices, subscribe
to processed data streams and transform conversational elements into concise summaries. These services use
LLMs hosted in containerized environments managed by Kubernetes. To enhance performance and handle burst
traffic, tiered caching is employed, with in-memory caches (e.g., Redis) storing recent conversation segments and
incremental updates to minimize re-summarization.

Table 1. Technical Features of the Summarization Engine

Feature Description
Transformer-based Mod-
els

Utilizes large language models like GPT or BERT to
generate concise summaries of conversational data.

Containerized Deploy-
ment

Services run in Docker containers managed by Ku-
bernetes, ensuring scalability and fault tolerance.

Hardware Acceleration Summarization engines leverage GPUs or TPUs for
high-performance inference.

Multi-tier Caching Combines in-memory and distributed caching lay-
ers to reduce redundant computations and improve
latency.

3.4. Caching and Load Balancing Components

To manage high traffic loads and ensure uninterrupted service, the architecture inte-
grates advanced caching and load balancing mechanisms. Load balancers, such as those
provided by NGINX or HAProxy, route client requests to available summarization microser-
vices based on a combination of criteria, including node health, proximity, and current
workload. These load balancers perform real-time health checks on individual nodes,
allowing them to dynamically redistribute traffic away from underperforming or failing
instances.

Caching layers complement the load balancers by reducing the need for redundant
computations. The caching system stores previously computed summaries and frequently
requested data snippets, which are indexed for rapid retrieval. For example, if a client appli-
cation requests a summary that has already been computed, the cache serves the response
directly, bypassing the summarization engine entirely. Cache invalidation mechanisms



Version 2023 submitted to JICET 119

are carefully implemented to ensure that outdated summaries are refreshed only when
underlying data changes.

Additionally, the system employs prewarming strategies to ensure that frequently
accessed summaries remain in the cache, even during low-traffic periods. This strategy
minimizes cache misses and reduces latency for users. Together, the caching and load
balancing components provide a robust infrastructure for handling bursty traffic patterns
while maintaining high performance.

Table 2. Key Functionalities of Caching and Load Balancing Components

Functionality Description
Dynamic Load Balancing Routes requests to the most suitable summarization

microservices, ensuring even distribution of work-
loads.

Real-Time Health Checks Continuously monitors microservices and reroutes
traffic away from failing nodes.

Efficient Caching Stores previously computed summaries and fre-
quently accessed data for fast retrieval.

Cache Prewarming Proactively loads frequently requested summaries
into the cache to reduce latency.

3.5. End-to-End Scalability and Fault Tolerance

The system architecture is designed with scalability and fault tolerance as primary
considerations. Horizontal scaling is supported at all layers, from the ingestion nodes to the
summarization microservices. Redundancy is built into every component, ensuring that the
system can recover gracefully from hardware or network failures. For example, ingestion
nodes and brokers are deployed in geographically distributed clusters, minimizing the
impact of localized outages.

In addition, the system supports elastic scaling, where resources can be automatically
added or removed based on traffic patterns. This is achieved through auto-scaling rules
defined within the orchestration platform, allowing the system to adapt to sudden changes
in demand without manual intervention. Fault detection and recovery mechanisms fur-
ther enhance the system’s reliability, enabling continuous operation even under adverse
conditions.

This end-to-end architecture ensures a seamless, high-performance environment for
processing and summarizing conversational data, meeting the demands of modern real-
time applications.

4. Ensuring Low Latency

Low latency is a critical requirement for real-time AI summarization pipelines, par-
ticularly when handling large volumes of conversational data across distributed systems.
Achieving this goal necessitates the optimization of multiple architectural layers, including
data ingestion, transport protocols, serialization, and summarization workflows. This
section deals with the strategies employed to ensure sub-second latency while maintaining
high throughput and system resilience.

4.1. High-Throughput Ingestion Strategies

A high-throughput ingestion layer is essential for minimizing queuing delays in real-
time pipelines. One effective strategy involves the use of batching and micro-batching
techniques. While a fully streaming architecture offers the lowest latency, processing data
in micro-batches of just a few milliseconds can significantly reduce the overhead associated
with network calls, serialization, and acknowledgments. For example, batching 5–10ms
worth of incoming messages amortizes these costs, resulting in up to a 20% reduction
in latency without introducing perceptible delays in the overall pipeline. Frameworks



Version 2023 submitted to JICET 120

High-Throughput
Ingestion Strategies

Batching, Zero-Copy Data Transfer

Protocol and Network
Optimizations

gRPC, RDMA, Compression

Event-Driven Scaling
and Adaptive Rate Control

Auto-Scaling, Rate Control

Data Serialization
and Compression

Protocol Buffers, Compression Levels

Ensuring Low Latency

Figure 5. Ensuring Low Latency: The system employs multiple strategies to maintain low latency, including high-
throughput ingestion with batching and zero-copy data transfer, optimized protocols and network infrastructure
(e.g., gRPC, RDMA), event-driven scaling to handle fluctuating workloads, and efficient serialization and
compression techniques tailored to current conditions. Together, these measures reduce delays while maximizing
throughput and resilience.

designed for streaming, such as Kafka, naturally support this approach by batching writes
to message queues and applying back-pressure to regulate downstream flow.

Additionally, zero-copy data transfer techniques reduce CPU overhead by eliminating
intermediate memory copying steps. Traditional pipelines frequently copy data multiple
times—from kernel to user space, from broker buffers to application-level memory, and so
on. Modern systems mitigate this inefficiency by leveraging zero-copy protocols such as
‘sendfile()‘ on Unix-like operating systems or RDMA (Remote Direct Memory Access) in
advanced data center networks. In Kafka-based pipelines, for instance, data can be trans-
ferred directly from a broker’s page cache to a consumer application without intermediate
copies, shaving off critical milliseconds of latency.

To further enhance ingestion performance, edge-based data collection is employed.
Ingestion nodes deployed at the network edge—close to the users generating conversational
data—reduce WAN latency by processing data locally before forwarding it to the central
pipeline. These edge nodes can perform lightweight operations such as data normalization,
filtering, and compression, offloading some processing tasks from the core infrastructure.
This localized preprocessing improves both responsiveness and scalability by reducing the
volume of raw data transported to central servers.

4.2. Protocol and Network Optimizations

The choice of transport protocols and network configurations plays a pivotal role
in minimizing latency. Modern application-level protocols such as gRPC over HTTP/2
outperform older protocols by leveraging features like multiplexed streams, header com-
pression, and built-in flow control. These advancements reduce the round-trip time for
request-response cycles and ensure better utilization of network resources. Emerging
QUIC-based protocols, which operate over UDP, further improve tail latency by reducing
handshake overhead and enabling fast reconnections.

Hardware-accelerated networking techniques are also employed to reduce latency
within data centers. RDMA, combined with kernel-bypass networking stacks like DPDK



Version 2023 submitted to JICET 121

(Data Plane Development Kit), enables direct memory access across nodes without CPU
intervention, drastically reducing round-trip times. These optimizations are particularly
effective in high-throughput environments, where microsecond-level improvements can
have a significant cumulative impact.

Encryption overhead is another factor that affects latency. While data security is
essential, TLS termination incurs computational costs. This challenge can be addressed
by deploying TLS offloading hardware or using cryptographic accelerators. Selective
encryption offers an additional solution by allowing less sensitive metadata to traverse
lower-latency paths, while end-to-end encryption is maintained for critical conversation
content. Intelligent compression strategies further optimize network usage. For instance,
adaptive compression dynamically adjusts the compression level based on network condi-
tions, employing fast algorithms like LZ4 during low-CPU, high-bandwidth scenarios and
more aggressive methods like Zstandard under peak loads.

4.3. Event-Driven Scaling and Adaptive Rate Control

To maintain low latency during sudden traffic surges or transient failures, the system
relies on event-driven scaling and adaptive rate control mechanisms. Horizontal auto-
scaling of summarization microservices is a core strategy, with orchestration platforms such
as Kubernetes monitoring key metrics like message backlog, GPU utilization, and latency.
When thresholds are exceeded, additional containerized summarization instances are
automatically provisioned, ensuring that the system can handle increased load. Conversely,
instances are decommissioned during low-traffic periods to conserve resources.

Adaptive rate limiting is another crucial mechanism for managing congestion in the
pipeline. When downstream components like summarization engines or storage tiers
experience high latency, ingestion rates are dynamically throttled to prevent cascading
backlogs. A credit-based flow control system adjusts the ingestion speed in real-time,
prioritizing latency-sensitive tasks while temporarily deferring non-critical data.

Event-driven architectures enable rapid responses to anomalies such as spikes in
latency or resource exhaustion. Load-shedding mechanisms are employed in extreme cases,
where low-priority tasks are deferred or dropped to preserve performance for high-priority
users. This selective degradation aligns with service-level objectives (SLOs) that prioritize
premium users during peak demand, maintaining system reliability under stress.

4.4. Data Serialization and Compression Approaches

Efficient serialization and compression are vital for reducing latency while minimizing
resource consumption. Binary serialization formats such as Protocol Buffers, FlatBuffers,
and Cap’n Proto offer significant advantages over text-based formats like JSON. These
formats produce smaller payloads and require fewer CPU cycles for serialization and
deserialization, leading to more predictable low-latency performance under heavy load.

Schema evolution and forward compatibility are also critical considerations. By
employing schema-aware serialization methods, the system can evolve its data models
without breaking compatibility. Precompiled schemas eliminate costly runtime lookups or
dynamic parsing, ensuring that decoding operations remain efficient.

Selective compression strategies further optimize data transmission. For example,
large text fields or high-entropy binary data are compressed using lightweight algorithms
like Snappy or LZ4, which offer high-speed compression with moderate size reductions. For
data requiring greater compression, Zstandard can be used in balanced mode, providing
better ratios while keeping decompression times low. By tailoring compression approaches
to specific data types, the system achieves a balance between bandwidth savings and
processing overhead.

4.5. Integrated Latency Reduction Strategies

The combined use of these techniques results in a comprehensive framework for
low-latency real-time AI summarization. By optimizing ingestion pipelines, leveraging



Version 2023 submitted to JICET 122

advanced protocols and hardware, scaling dynamically, and applying efficient serialization
and compression methods, the system achieves sub-second response times even under high
traffic conditions. These strategies ensure that users experience fast and reliable summariza-
tion services, meeting the stringent performance requirements of modern conversational
AI applications.

5. Achieving High Availability and Disaster Recovery

Redundancy at Every Layer

Ingestion Endpoints, Brokers,
Microservices

Active-Active
Multi-Region Deployments

Geographic Replication, Fault
Tolerance

Consensus Protocols

Raft, Paxos, ZooKeeper

Automated Failover
and Self-Healing

Kubernetes, DNS Routing, Recovery

High Availability and
Disaster Recovery

Figure 6. Achieving High Availability and Disaster Recovery: The system incorporates redundancy at all critical
layers, active-active multi-region deployments for fault tolerance, consensus protocols for state synchronization,
and automated failover mechanisms. These strategies ensure uninterrupted operation and rapid recovery from
failures, minimizing downtime and preserving data integrity.

Ensuring high availability (HA) and robust disaster recovery (DR) mechanisms is
essential for maintaining uninterrupted service in the face of component failures, network
outages, or catastrophic events. This section outlines the strategies employed to achieve
fault tolerance, minimize downtime, and ensure data integrity and service continuity. The
architecture incorporates redundancy, distributed consensus protocols, and automated
failover mechanisms to meet stringent uptime requirements.

5.1. Redundancy at Every Layer

At the core of high availability is the principle of redundancy, which involves de-
ploying multiple instances of every critical system component. In the data ingestion layer,
multiple geographically distributed endpoints collect and route data, ensuring that failure
in one location does not disrupt data flow. Streaming platforms, such as Kafka, are config-
ured with redundant brokers and replicated partitions. Each partition has multiple replicas
stored across broker nodes to provide resilience against individual node failures. Similarly,
summarization microservices are deployed as stateless, horizontally scalable instances,
enabling any instance to take over the workload of a failed peer.

Geographic distribution of redundant components adds an additional layer of pro-
tection. For instance, ingestion endpoints and summarization services are deployed in
different cloud regions or data centers. If one region experiences a failure, another can con-
tinue processing requests seamlessly. Load balancers and DNS configurations automatically
detect the failure and reroute traffic to healthy instances, minimizing user-facing disruption.



Version 2023 submitted to JICET 123

Mirrored caches are also employed to replicate critical data, ensuring that cache-dependent
workflows can continue operating even if one cache node becomes unavailable.

5.2. Active-Active Multi-Region Deployments

Active-active multi-region deployments are a cornerstone of fault tolerance in dis-
tributed systems. In this configuration, multiple regions actively handle traffic simultane-
ously while maintaining synchronized states. This setup not only ensures fault tolerance
but also improves latency for users by directing them to the closest operational region.
Active-active replication involves complex challenges, particularly around maintaining
consistency and preventing message duplication or loss.

Synchronization between active regions is achieved using advanced replication proto-
cols that track offsets and ensure idempotent processing. For instance, Kafka’s MirrorMaker
or Confluent’s multi-cluster replication tools synchronize data streams between regions
while preserving message ordering. To handle failover, client applications are designed to
automatically reconnect to the surviving region if their primary region becomes unavailable.
This approach ensures minimal downtime and a seamless user experience.

A key consideration in active-active architectures is the trade-off between consistency
and availability. By adopting a design that prioritizes eventual consistency and idempotent
operations, the system avoids performance bottlenecks during inter-region synchronization
while ensuring data integrity. Furthermore, this design mitigates the risk of split-brain
scenarios, where multiple regions independently process the same data due to a loss of
synchronization.

5.3. Consensus Protocols for State Synchronization

Distributed consensus protocols, such as Raft and Paxos, play a vital role in maintain-
ing a consistent view of the system state across replicas. These protocols enable coordinated
decision-making even in the presence of network partitions or component failures. In
streaming platforms like Kafka, the leader-follower replication model is a practical applica-
tion of distributed consensus. When a partition leader fails, a new leader is elected through
a quorum-based voting mechanism, ensuring continuity in data processing.

Consensus protocols are also used to manage cluster metadata and configuration
changes in fault-tolerant key-value stores like ZooKeeper or etcd. These stores act as
the backbone for many distributed systems, storing critical information such as partition
assignments, leader elections, and service discovery data. By ensuring consistency across
replicas, consensus protocols prevent conflicting or stale configurations that could disrupt
service operation.

For summarization microservices, state synchronization is often simplified due to
their stateless nature. However, in cases where session or cache data is shared, distributed
caching platforms like Redis Cluster or Hazelcast use consistent hashing and quorum-based
replication to synchronize data across nodes. This ensures that data remains accessible
even during partial system failures.

5.4. Automated Failover and Self-Healing

Automation is a critical aspect of high availability, enabling systems to detect failures
and recover without human intervention. Automated failover mechanisms ensure that
traffic is rerouted away from failed components to healthy ones. For instance, Kubernetes
orchestrates failover by monitoring the health of pods through liveness and readiness
probes. When a summarization engine instance or broker node fails, Kubernetes removes it
from service and spins up a replacement instance. Similarly, load balancers, such as NGINX
or HAProxy, dynamically adjust their routing rules to exclude failed nodes.

DNS-based failover mechanisms complement these strategies by redirecting traffic
to healthy regions or endpoints during regional outages. Techniques such as weighted
DNS or GeoDNS allow traffic to be routed based on availability and proximity, further
improving resilience and performance.



Version 2023 submitted to JICET 124

Self-healing capabilities are embedded across the architecture to streamline recovery
processes. For example, when a broker node crashes, Kafka automatically promotes
a replica to leader status and resumes operations with minimal disruption. Similarly,
distributed caches employ eviction and synchronization mechanisms to rebuild cache
states after node failures. Orchestration platforms monitor resource usage and ensure that
components are restarted or rescheduled on healthy nodes when hardware failures occur.

Table 3. Key High Availability Strategies and Their Benefits

Strategy Description and Benefits
Redundant Components Multiple instances of ingestion nodes, brokers, and

summarization microservices ensure that failure in
one component does not disrupt overall operations.

Active-Active Deploy-
ments

Multi-region setups actively handle traffic in parallel,
providing fault tolerance and improved latency for
users.

Consensus Protocols Distributed protocols like Raft and Paxos ensure con-
sistency and reliable state synchronization across
replicas.

Automated Failover Orchestrators and DNS failover mechanisms auto-
matically detect failures and reroute traffic to healthy
instances, minimizing downtime.

Self-Healing Systems Systems automatically restart failed nodes and re-
build states, reducing the need for manual interven-
tion.

5.5. Disaster Recovery Mechanisms

In addition to high availability, disaster recovery mechanisms are essential for pro-
tecting against catastrophic failures, such as data center outages or large-scale network
disruptions. The architecture employs periodic data backups, cross-region replication, and
recovery drills to ensure that services can be restored quickly.

Data backups are taken at regular intervals and stored in geographically distributed
locations to guard against data loss. Streaming platforms like Kafka maintain replicated
logs, which can be replayed to rebuild system states during recovery. Summarization
engines, which rely on pre-trained models, store model weights and checkpoints in object
storage services with cross-region replication enabled.

Disaster recovery testing is a critical practice for ensuring readiness. Regular drills
simulate scenarios such as region-wide outages, validating the system’s ability to failover
and recover within predefined recovery time objectives (RTOs). By continuously refining
these processes, the architecture achieves both resilience and operational continuity.

Table 4. Disaster Recovery Mechanisms and Objectives

Mechanism Description and Objective
Cross-Region Backups Data and system states are replicated across geo-

graphically distributed locations to ensure recovery
in case of regional failures.

Replicated Streaming
Logs

Kafka and similar platforms replay logs to rebuild
states and recover lost messages during outages.

Disaster Recovery Drills Simulated failures test the system’s ability to meet
recovery time objectives and maintain service conti-
nuity.

Model Checkpointing AI models and summarization engine weights are
stored in distributed object storage, ensuring they
can be restored quickly during recovery.



Version 2023 submitted to JICET 125

6. Performance Evaluation

In order to assess the effectiveness, robustness, and efficiency of the proposed resilient
real-time data delivery architecture for AI summarization in conversational platforms, we
conducted a comprehensive performance evaluation. Our primary goals were to measure
end-to-end latency, throughput, availability under failure scenarios, and the speed and
reliability of disaster recovery processes. To this end, we built a carefully controlled testbed
that emulated a global deployment of the system, enabling us to investigate the behavior of
each component under realistic conditions. Subjecting the pipeline to varying workloads,
network perturbations, node failures, and regional outages, we obtained actionable results
into system performance and areas for future optimization.

6.1. Testbed Description

To validate the proposed architecture, we constructed a distributed testbed designed
to mimic a global conversational AI platform serving geographically dispersed clients.
The testbed spanned two cloud regions—US-East and EU-West—selected to represent
realistic transatlantic latencies and network conditions. Each region hosted an identical
stack of components, including ingestion endpoints, a Kafka-based streaming layer, caching
systems, and containerized summarization services managed by Kubernetes. This dual-
region setup allowed us to investigate both localized failure scenarios and larger-scale
regional outages, providing insights into the system’s active-active replication and failover
mechanisms.

At the ingestion layer, we deployed multiple endpoint servers designed to receive
conversational data from synthetic client simulators. These simulators generated messages
at controlled rates, varying from moderate (10,000 messages per second) to peak (100,000
messages per second) workloads. The ingestion endpoints serialized incoming messages
using Protocol Buffers and batched them in short, millisecond-scale micro-batches before
sending them into the Kafka cluster. In each region, we operated a three-broker Kafka
cluster configured for triple replication of topic partitions. This replication strategy ensured
fault tolerance at the broker level and guaranteed data durability even if one or two brokers
became unavailable.

Each Kafka cluster was supported by in-memory caching layers (using Redis) for
frequently requested conversation segments and recently produced summaries. These
caches reduced load on the summarization services and minimized re-processing times, ul-
timately contributing to lower end-to-end latency. The summarization layer itself consisted
of containerized microservices running Transformer-based language models fine-tuned for
dialogue summarization. These models were GPU-accelerated and horizontally scalable,
allowing us to dynamically increase capacity when message rates spiked.

On top of these services, we implemented various optimizations and protocols aimed
at minimizing latency and ensuring high availability. We leveraged gRPC over HTTP/2 for
efficient message transport, reduced overhead with selective compression and zero-copy
data transfer, and utilized Kubernetes Horizontal Pod Autoscalers for dynamic scaling
of summarization services. Additionally, load balancers with integrated health checks
rerouted traffic around failing components, while continuous monitoring and observability
tools (e.g., Prometheus and Grafana) recorded performance metrics, latencies, and error
rates.

To measure performance, we focused on the end-to-end latency, defined as the time
from message injection at the ingestion endpoint until the summarization result was re-
turned to the client simulator. We also examined throughput metrics—how steadily the
system could process tens or hundreds of thousands of messages per second—under
varying conditions. To assess availability, we simulated partial failures at different layers,
including broker node crashes and summarization service interruptions. For disaster recov-
ery evaluations, we introduced controlled regional outages, data corruption events, and
observed how quickly and accurately the system could restore service and data consistency.



Version 2023 submitted to JICET 126

6.2. Latency, Throughput, and Availability Benchmarks

Our first series of experiments focused on evaluating system performance under
nominal and peak loads, while introducing controlled component failures to measure
availability. Under a nominal load of approximately 10,000 messages per second, the
system consistently achieved a p95 (95th percentile) latency of under 80 ms. This included
time for ingestion, Kafka write and read operations, data deserialization, summarization
processing, and delivery of results. The low latency at this moderate load level was a
direct result of careful architectural choices: using efficient serialization formats, leveraging
micro-batching to amortize overheads, and employing zero-copy network transfers. The
caching layer further contributed by enabling summarization engines to quickly access
recent conversation context without re-fetching or re-processing large amounts of data.

As we gradually increased the traffic to a peak load of 100,000 messages per second,
the system’s latency naturally grew due to the increased pressure on network bandwidth,
CPU/GPU resources, and I/O operations. Even so, the p95 latency remained around
120 ms, still comfortably within our target of keeping latency under 150 ms under peak
conditions. The ability to scale the summarization services horizontally was critical here.
When the system detected growing backlogs or prolonged processing times, Kubernetes
automatically provisioned additional summarization pods. This scaling ensured that the
pipeline maintained high throughput without saturating any single component.

We also investigated availability by simulating single-node broker failures. By forcibly
terminating one of the Kafka brokers in the cluster, we observed the cluster’s response
time and effects on latency. The broker election protocols in Kafka triggered within 2–3
seconds, automatically choosing a new leader for the affected partitions. During this brief
re-election window, we noted a slight spike in latency (on the order of tens of milliseconds),
but crucially, no data loss occurred. The intact replicas of each partition ensured continuity,
and once the new leader was elected, the system resumed normal operation.

We repeated a similar procedure for summarization services by forcibly crashing a
subset of pods. Kubernetes promptly detected these failures through liveness probes and
spun up new pods to maintain the desired replication level. The load balancer, observing
failed health checks, seamlessly redirected requests to healthy pods. As a result, there
was negligible downtime and only a minor latency hiccup as traffic was rerouted. Such
resilience at the service layer illustrated the value of container orchestration and active
load management, which, combined with reliable data streaming, kept the system running
smoothly even under component-level failures.

Our benchmark results demonstrated that under nominal conditions, our architecture
could reliably deliver low-latency responses at moderate to high traffic volumes. Under
peak load, while latency did increase, it remained within acceptable bounds, thanks to
adaptive scaling and careful optimization. Moreover, the system’s high availability was
confirmed by the absence of data loss and minimal downtime following single-node broker
and summarization service failures.

6.3. Disaster Recovery Experiments

While single-node failures are common scenarios that any robust system should handle
gracefully, larger-scale disasters pose more substantial challenges. To test the system’s
resilience under more catastrophic events, we conducted disaster recovery experiments
involving regional outages and data corruption scenarios. These tests were designed to
push the architecture’s geo-redundancy, snapshot-based backups, and synchronization
protocols to their limits, thereby validating the efficacy of our active-active replication
approach and data durability strategies.

First, we simulated a regional outage by disabling the entire US-East region. This
emulation involved shutting down all components—ingestion endpoints, Kafka brokers,
caches, and summarization services—in that region. Under normal circumstances, such a
large-scale failure could cause prolonged downtime and potentially significant data loss.
However, our architecture was designed with active-active replication, meaning that both



Version 2023 submitted to JICET 127

US-East and EU-West regions were continuously receiving and processing data in parallel.
The replicated Kafka topics ensured that EU-West had up-to-date copies of all conversation
data and message offsets, allowing it to continue serving client requests without missing
messages.

We observed that following the US-East shutdown, clients connected from various geo-
graphic locations automatically rerouted to the EU-West endpoints. This load redistribution
caused only a slight increase in latency—approximately 15 ms on average—as the longer
network paths for US-based users to EU-West servers contributed to the delay. Despite
this slight increase, there was no downtime or data loss. The summarization services in
EU-West continued producing real-time summaries, and the architecture’s failover logic
ensured uninterrupted operation. After we re-enabled the US-East region, the system’s
synchronization mechanisms quickly restored data consistency. Within a few minutes,
offsets, caches, and cluster metadata were fully synchronized, and traffic load balanced
between the two regions returned to its pre-failure distribution.

In addition to regional outages, we tested catastrophic data corruption scenarios.
For instance, we simulated a situation where a subset of Kafka partitions in the EU-West
region experienced logical corruption due to a faulty storage module. Without robust
recovery mechanisms, such an event could lead to partial data loss or inconsistencies that
degrade summarization quality. Our solution involved maintaining periodic snapshot-
based backups of Kafka topics and associated metadata in geo-distributed object storage.
Triggering a rollback from these snapshots restored the system’s consistent state within
approximately five minutes. This process included retrieving the backups, reinitializing
Kafka topics to a known good offset, and allowing summarization services to replay recent
data as needed.

Although the snapshot-based recovery introduced a longer downtime than simple
node failures—indeed, five minutes represents a non-trivial interruption in a real-time
setting—it ensured data integrity and continuity. Throughout this rollback, the system
emitted clear status signals and error messages, allowing operators to track recovery
progress. Once the data was restored, the summarization pipeline resumed its normal
operations, confirming that our recovery strategy protected against even severe logical
failures. While further optimization could reduce this recovery time, the key takeaway was
that the architecture prevented permanent data loss and allowed for eventual consistency
restoration after catastrophic events.

6.4. Discussion

The suite of experiments and their results provided multiple valuable insights into
how to build and operate a resilient, low-latency real-time summarization platform. First
and foremost, the tests underscored the importance of careful orchestration at every layer.
The combination of container orchestration tools like Kubernetes, streaming platforms
like Kafka with robust replication and leader election mechanisms, and load balancing
logic capable of rerouting requests dynamically created a system that could self-heal from
component-level failures. These experiments showed that by layering redundancy and
employing consensus protocols, we could isolate failures and prevent them from escalating
into major outages.

Second, the results highlighted that low latency and high resiliency need not be
mutually exclusive. At moderate loads, the pipeline maintained latencies of well under
100 ms, which is crucial for real-time user experiences. Even as the message rate soared to
ten times the nominal load, adaptive scaling and efficient encoding formats kept latencies
near 120 ms. This demonstrated that with the right architectural choices—such as micro-
batching, zero-copy networking, and efficient serialization—maintaining millisecond-level
response times at scale is achievable. These optimizations can coexist harmoniously with
fault tolerance mechanisms, ensuring that adding resiliency does not inherently degrade
performance.



Version 2023 submitted to JICET 128

Third, the experiments reinforced the value of elasticity. Workloads in conversational
AI platforms are rarely static; user activity can spike unpredictably due to events like
marketing campaigns, time-zone-driven usage peaks, or breaking news. The ability to spin
up new summarization pods and scale horizontally in response to backlogs was instru-
mental in preserving performance under stress. Without elasticity, the system would either
over-provision resources at all times—leading to cost inefficiencies—or accept degraded
latency during peak load. Our tests showed that the adaptive strategies implemented
struck a good balance, allowing the infrastructure to handle surges effectively without
consistently running on costly overcapacity.

Furthermore, the disaster recovery experiments offered critical lessons on the design
of multi-region, active-active deployments. The results indicated that geo-redundancy, if
properly implemented, can ensure continuous operation even when an entire region is
taken offline. This capability is invaluable when facing real-world disasters such as natural
events, large-scale power outages, or substantial network partitions. Although complete
regional failures are rare, preparing for them ensures higher availability and business
continuity, which can significantly strengthen user trust and platform reputation.

The snapshot-based recovery from data corruption scenarios also taught us that while
proactive replication and geo-distribution can mitigate many issues, maintaining offline,
point-in-time backups remains essential. Logical errors, bugs in code, or operator mis-
takes can introduce corrupt data that replication alone cannot fix. Having a well-tested
restoration process—from regularly scheduled snapshot creation to swift retrieval from
object stores—proved vital. The five-minute restoration period, though not negligible, rep-
resented a substantial improvement over what could have been hours or days of downtime
without such backups. Future efforts could focus on accelerating this recovery loop through
incremental snapshots, partial replays, or more efficient metadata storage.

From an operational standpoint, the experiments illustrated that robust observability
and monitoring are paramount. Detailed metrics allowed us to quickly pinpoint latency
spikes, identify underutilized resources, and detect early signs of trouble in the pipeline.
Proactive alerting enabled quick responses to failures, sometimes even automating remedi-
ation steps. Moreover, the ability to simulate failures—both partial (single node) and catas-
trophic (full region)—in a controlled testbed environment paved the way for continuous
improvement. Regularly scheduled chaos engineering exercises could further strengthen
the pipeline’s resilience, as developers refine failover strategies, optimize caching layers, or
tweak compression settings to handle exceptional conditions more gracefully.

The performance evaluation experiments confirmed that the proposed architecture
can simultaneously deliver low latency, high availability, and robust disaster recovery
capabilities. The combination of distributed streaming frameworks, container orchestration,
adaptive scaling, zero-copy networking, schema-efficient serialization, geo-redundancy,
and snapshot-based recovery mechanisms create a system capable of meeting the strin-
gent demands of real-time conversational AI platforms. The lessons learned from these
experiments will guide ongoing enhancements, such as optimizing backup frequency,
reducing failover times, and refining auto-scaling policies. Ultimately, this ongoing process
of measurement, experimentation, and continuous improvement ensures that the platform
can confidently adapt to workloads, unforeseen failures, and new challenges in delivering
real-time summarized insights at a global scale.

7. Conclusion

Real-time conversational AI platforms present unique challenges that lie at the inter-
section of data delivery, distributed systems, and AI model integration. Addressing these
challenges requires a multidisciplinary approach that combines insights from streaming ar-
chitectures, fault-tolerant system design, and advancements in natural language processing.
This work contributes to the growing body of research by focusing on the infrastructural
aspects of real-time summarization systems, complementing existing advances in AI and
distributed computing.



Version 2023 submitted to JICET 129

A significant portion of the literature on real-time data delivery systems has explored
platforms such as Apache Kafka, Pulsar, and Flink, which are designed to handle high-
throughput, low-latency streaming workloads. These systems emphasize techniques such
as partitioning, replication, and back-pressure mechanisms to maintain scalability and
reliability in distributed environments. Partitioning strategies improve throughput by
enabling parallel processing, while replication ensures data availability even in the event
of node failures. Back-pressure mechanisms, critical in preventing data overflow and
cascading failures, allow upstream components to adjust their rates based on downstream
capacity.

Edge computing has also gained attention as a means to reduce latency and bandwidth
requirements. Recent work has focused on deploying geographically distributed pipelines
for edge data processing. However, much of this research centers around sensor data or
IoT applications, with less focus on the nuanced requirements of conversational workloads,
such as maintaining strict message ordering and providing consistent, context-aware data
streams. This paper builds upon these foundations, adapting these principles to address
the unique challenges posed by real-time summarization tasks.

On the AI side, the rise of transformer-based architectures, such as BERT and GPT, has
revolutionized summarization tasks. These models achieve state-of-the-art performance
through techniques such as pre-training on vast corpora and fine-tuning on domain-
specific datasets. Research in this area primarily focuses on optimizing model architectures,
improving data preprocessing pipelines, and leveraging transfer learning to adapt generic
models to specific summarization tasks.

Despite these advancements, the infrastructural requirements of delivering real-time
data to these models remain underexplored. For these models to perform optimally in
real-time scenarios, they require a steady stream of high-quality, low-latency data. This
work complements ongoing AI research by addressing the systemic challenges of ensuring
that summarization models operate under ideal conditions. By designing resilient and
efficient data pipelines, we ensure that these models can consistently generate accurate and
timely summaries, even in dynamic and fault-prone environments.

The fields of fault tolerance and disaster recovery have been extensively studied in
distributed systems. Traditional approaches such as quorum-based replication, write-ahead
logging, and eventual consistency have laid the groundwork for modern high-availability
frameworks. More recently, systems like Spanner, CockroachDB, and YugabyteDB have
introduced globally consistent database solutions, employing techniques such as TrueTime
synchronization and geo-distributed transactions to achieve strong consistency across
regions.

While these frameworks address many challenges associated with stateful, transac-
tional workloads, our work focuses on streaming and real-time data pipelines, which
require a different set of optimizations. Unlike transactional systems, real-time pipelines
must prioritize low-latency processing and throughput while maintaining consistency and
fault tolerance. By adapting concepts from database resilience, such as active-active geo-
replication and quorum-based leader election, we design a system tailored to the specific
demands of summarization workloads. This ensures that the system remains consistent,
durable, and highly available, even during large-scale failures.

This paper has presented an architecture and methodologies for achieving resilient,
real-time data delivery tailored to AI-driven summarization in conversational platforms.
We identified key challenges—low latency, high availability, and disaster recovery—and
proposed solutions that integrate streaming platforms, distributed consensus, active-active
replication, caching, load balancing, and container orchestration. Experimental results
show that our approach can reliably meet stringent latency targets and maintain availability
even under severe failure scenarios.

Future research directions include exploring adaptive routing algorithms that dynami-
cally choose the optimal region or pipeline stage for processing incoming data, integrating
more advanced anomaly detection techniques for proactive failure mitigation, and inves-



Version 2023 submitted to JICET 130

tigating the interplay of cost optimization strategies in multi-cloud environments. As
conversational systems become increasingly integral to modern communication, ensuring
the resilience and efficiency of their underlying data delivery infrastructure remains a
critical area of inquiry.

References
1. Yang, M.; Li, C.; Sun, F.; Zhao, Z.; Shen, Y.; Wu, C. Be relevant, non-redundant, and timely: Deep

reinforcement learning for real-time event summarization. In Proceedings of the Proceedings of
the AAAI Conference on Artificial Intelligence, 2020, Vol. 34, pp. 9410–9417.

2. Babu, N.T.; Stewart, C. Energy, latency and staleness tradeoffs in ai-driven iot. In Proceedings
of the Proceedings of the 4th ACM/IEEE Symposium on Edge Computing, 2019, pp. 425–430.

3. Deng, C.; Fang, X.; Wang, X.; Law, K. Software orchestrated and hardware accelerated artificial
intelligence: toward low latency edge computing. IEEE Wireless Communications 2022, 29, 110–
117.

4. Wang, Y.; Dong, Y.; Guo, S.; Yang, Y.; Liao, X. Latency-aware adaptive video summarization for
mobile edge clouds. IEEE Transactions on Multimedia 2019, 22, 1193–1207.

5. Tang, Y.; Puduppully, R.; Liu, Z.; Chen, N. In-context learning of large language models
for controlled dialogue summarization: A holistic benchmark and empirical analysis. In
Proceedings of the Proceedings of the 4th New Frontiers in Summarization Workshop, 2023, pp.
56–67.

6. Gupta, D.; Bhatia, M.; Kumar, A. Resolving data overload and latency issues in multivariate
time-series IoMT data for mental health monitoring. IEEE Sensors Journal 2021, 21, 25421–25428.

7. Jiang, X.; Shokri-Ghadikolaei, H.; Fodor, G.; Modiano, E.; Pang, Z.; Zorzi, M.; Fischione, C.
Low-latency networking: Where latency lurks and how to tame it. Proceedings of the IEEE 2018,
107, 280–306.

8. Santos, J.; Wauters, T.; Volckaert, B.; De Turck, F. Towards low-latency service delivery in a
continuum of virtual resources: State-of-the-art and research directions. IEEE Communications
Surveys & Tutorials 2021, 23, 2557–2589.

9. Jiang, Z.; Fu, S.; Zhou, S.; Niu, Z.; Zhang, S.; Xu, S. AI-assisted low information latency wireless
networking. IEEE Wireless Communications 2020, 27, 108–115.

10. Liu, D.; Sun, F.; Wang, W.; Dev, K. Distributed computation offloading with low latency for
artificial intelligence in vehicular networking. IEEE Communications Standards Magazine 2023,
7, 74–80.

11. Mutalemwa, L.C.; Shin, S. A classification of the enabling techniques for low latency and
reliable communications in 5G and beyond: AI-enabled edge caching. IEEE Access 2020,
8, 205502–205533.

12. Ma, J.; Li, T.; Zhang, Y. AI-based abstractive text summarization towards AIoT and edge
computing. Internet Technology Letters 2023, 6, e354.

13. Lim, J. Latency-aware task scheduling for IoT applications based on artificial intelligence with
partitioning in small-scale fog computing environments. Sensors 2022, 22, 7326.

14. Richardson, C.; Zhang, Y.; Gillespie, K.; Kar, S.; Singh, A.; Raeesy, Z.; Khan, O.Z.; Sethy,
A. Integrating summarization and retrieval for enhanced personalization via large language
models. arXiv preprint arXiv:2310.20081 2023.


	Introduction
	Challenges in Real-Time Summarization
	Proposed System Architecture
	Data Ingestion Layer
	Message Queues and Stream Processing
	Summarization Engine Integration
	Caching and Load Balancing Components
	End-to-End Scalability and Fault Tolerance

	Ensuring Low Latency
	High-Throughput Ingestion Strategies
	Protocol and Network Optimizations
	Event-Driven Scaling and Adaptive Rate Control
	Data Serialization and Compression Approaches
	Integrated Latency Reduction Strategies

	Achieving High Availability and Disaster Recovery
	Redundancy at Every Layer
	Active-Active Multi-Region Deployments
	Consensus Protocols for State Synchronization
	Automated Failover and Self-Healing
	Disaster Recovery Mechanisms

	Performance Evaluation
	Testbed Description
	Latency, Throughput, and Availability Benchmarks
	Disaster Recovery Experiments
	Discussion

	Conclusion
	References

