

Advances in Intelligent Information Systems
VOLUME 9 ISSUE 4

[21]

Overcoming Architectural Barriers in Microservice

Design: Strategies for Enhancing Scalability,

Resilience, and Maintainability in Distributed Systems
Hassan Tariq

Department of Computer Science, King Saud University

Mariam Abdul

Department of Computer Science, Sultan Qaboos University

Keywords: Microservices,

Docker, Kubernetes,

Spring Boot, API Gateway,

Service Mesh, Circuit

Breaker, RESTful APIs,

gRPC, Istio, Consul,

Netflix OSS, Apache

Kafka, Prometheus,

Grafana, Zipkin,

OpenTracing, ELK Stack,

Redis, NGINX

Excellence in Peer-Reviewed
Publishing:
 QuestSquare

Abstract
This research paper, "Overcoming Architectural Barriers in Microservice

Design," explores the critical aspects of microservice architecture,

emphasizing the need to address inherent architectural challenges to maximize

scalability and performance. Contrasting microservices with traditional

monolithic architectures, the study highlights how the former's modular and

independently deployable services offer superior scalability, development

speed, resilience, and technology diversity. However, microservices introduce

complexities such as inter-service communication, data consistency, and

distributed system management. The paper delves into these architectural

barriers, including service decomposition, data management, inter-service

communication, and deployment orchestration. Strategies such as Domain-

Driven Design (DDD), event sourcing, the Saga pattern, and containerization

technologies like Docker and Kubernetes are discussed as solutions to these

challenges. By addressing key questions and providing best practices, this

research aims to offer valuable insights for organizations adopting

microservice architectures, ultimately contributing to more responsive,

resilient, and scalable software systems.

Creative Commons License Notice:

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0).

You are free to:
Share: Copy and redistribute the material in any medium or format.

Adapt: Remix, transform, and build upon the material for any purpose, even commercially.

Under the following conditions:
Attribution: You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any

reasonable manner, but not in any way that suggests the licensor endorses you or your use.

ShareAlike: If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the
original. Please visit the Creative Commons website at https://creativecommons.org/licenses/by-sa/4.0/.

I. Introduction
The advent of microservice architecture has revolutionized the way software systems

are designed and developed. This research paper delves into the intricacies of

microservice architecture, contrasting it with monolithic architecture, and

highlighting the importance of overcoming architectural barriers to enhance

Advances in Intelligent Information Systems
VOLUME 9 ISSUE 4

[22]

scalability and performance. Furthermore, this paper will outline the primary

objectives and scope of the research, addressing key questions and limitations.[1]

A. Background on Microservice Architecture
Microservice architecture, a variant of the service-oriented architecture (SOA), has

gained prominence in the realm of software development. It entails breaking down a

large application into smaller, loosely coupled, and independently deployable

services. Each service encapsulates a specific business capability and can be

developed, deployed, and scaled independently.[2]

1. Definition and Evolution
Microservice architecture can be defined as an architectural style that structures an

application as a collection of small autonomous services modeled around a business

domain. Each microservice is a small application with its own hexagonal architecture,

incorporating business logic along with various adapters.[3]

The evolution of microservice architecture can be traced back to the early 2000s,

stemming from the limitations of monolithic architectures. Monolithic architectures

encapsulate all functionalities within a single codebase, leading to several challenges

such as difficulty in scaling, prolonged development cycles, and complex deployment

processes.[4]

In contrast, microservices emerged as a solution to these problems by advocating for

the division of a single application into a suite of small services, each running its own

process and communicating with lightweight mechanisms, often HTTP or messaging

queues. This approach allows for more flexible and modular development, facilitating

continuous integration and continuous deployment (CI/CD) practices.[5]

Advances in Intelligent Information Systems
VOLUME 9 ISSUE 4

[23]

2. Comparison with Monolithic Architecture
Monolithic architecture, characterized by a single unified codebase, is inherently

simpler in terms of development and deployment. However, as applications grow in

complexity, monolithic architecture becomes increasingly cumbersome. A change in

one part of the application necessitates testing and redeploying the entire application,

which can be time-consuming and error-prone.[6]

Microservices, on the other hand, offer numerous advantages over monolithic

architectures:

-Scalability: Individual services can be scaled independently based on demand,

enhancing resource utilization and performance.

-Development Speed: Smaller, focused teams can work on different services

concurrently, accelerating development cycles.

-Resilience: Failure of one service does not necessarily affect the entire system,

improving overall system resilience.

-Technology Diversity: Different services can be built using different technologies,

enabling the use of the best tool for each specific task.

However, microservices also introduce complexities such as inter-service

communication, data consistency, and distributed system challenges. Addressing

these complexities is crucial for the successful implementation and operation of

microservice architectures.

B. Importance of Overcoming Architectural Barriers
Architectural barriers can hinder the effectiveness and efficiency of microservice

architectures. Overcoming these barriers is essential for maximizing the benefits of

microservices, particularly in terms of scalability and performance.

1. Impact on Scalability and Performance
Scalability and performance are paramount in modern software systems.

Microservices inherently support horizontal scaling, allowing services to be replicated

and distributed across multiple servers. This capability enables applications to handle

increased loads and improve response times.

However, achieving optimal scalability and performance requires addressing specific

architectural barriers:

-Service Communication: Efficient communication between services is critical.

Using lightweight protocols such as REST or gRPC can reduce latency and enhance

performance.

-Data Management: Ensuring data consistency and integrity across multiple services

can be challenging. Techniques such as event sourcing and CQRS (Command Query

Responsibility Segregation) can help manage data effectively.

Advances in Intelligent Information Systems
VOLUME 9 ISSUE 4

[24]

-Monitoring and Logging: Distributed systems require robust monitoring and

logging mechanisms to track the performance and health of individual services. Tools

like Prometheus, Grafana, and ELK stack can provide valuable insights.

2. Relevance to Modern Software Development
The relevance of overcoming architectural barriers extends beyond scalability and

performance. In the context of modern software development, microservices align

well with several key principles and practices:

-Agile Development: Microservices facilitate agile methodologies by enabling

smaller, autonomous teams to develop, test, and deploy services independently.

-DevOps: The modular nature of microservices supports continuous integration and

continuous deployment (CI/CD) pipelines, promoting faster and more reliable

releases.

-Cloud-Native Applications: Microservices are well-suited for cloud environments,

allowing for dynamic scaling and efficient resource utilization. Containerization

technologies such as Docker and orchestration tools like Kubernetes are commonly

used to manage microservice deployments.

By addressing architectural barriers, organizations can fully leverage the advantages

of microservices, resulting in more responsive, resilient, and scalable applications.

C. Objectives and Scope of the Research
The primary objective of this research is to explore the various architectural barriers

in microservice architectures and propose solutions to overcome them. This research

aims to provide a comprehensive understanding of the challenges and best practices

associated with microservices.

1. Key Questions Addressed
The research will address several key questions, including:

- What are the common architectural barriers encountered in microservice

architectures?

- How do these barriers impact the scalability and performance of microservices?

- What strategies and tools can be employed to overcome these barriers?

- How do microservices compare with monolithic architectures in terms of

development, deployment, and operational efficiency?

- What are the best practices for designing, developing, and maintaining microservice-

based systems?

By answering these questions, the research aims to provide valuable insights and

practical guidance for organizations adopting or operating microservice architectures.

Advances in Intelligent Information Systems
VOLUME 9 ISSUE 4

[25]

2. Scope Limitations
While this research aims to be comprehensive, it is important to note certain scope

limitations:

-Focus on Architectural Barriers: The primary focus is on architectural barriers and

their solutions. Other aspects such as organizational and cultural challenges, while

relevant, are not the main focus.

-Technology-Specific Details: The research will discuss general principles and

practices applicable to microservices but will not delve deeply into specific

technologies or frameworks.

-Case Studies and Examples: The research will include case studies and examples

to illustrate key points, but these will be representative rather than exhaustive.

In conclusion, this research endeavors to provide a detailed exploration of

microservice architecture, highlighting the importance of overcoming architectural

barriers to achieve optimal scalability and performance. By addressing key questions

and outlining best practices, this research aims to contribute valuable knowledge to

the field of modern software development.[7]

II. Architectural Barriers in Microservice Design

A. Service Decomposition

1. Challenges in Identifying Service Boundaries
Identifying service boundaries is one of the most critical and challenging aspects of

microservice architecture. This process involves dividing a system into smaller,

loosely coupled components that can be developed, deployed, and scaled

independently. However, the complexity arises from the need to balance granularity,

modularity, and cohesion.[8]

Firstly, determining the right level of granularity is crucial. Too fine-grained services

can lead to a large number of services, which increases the complexity of managing

inter-service communication and coordination. Conversely, coarse-grained services

may not fully exploit the benefits of microservices, leading to monolithic-like

characteristics.[9]

Moreover, achieving optimal modularity involves ensuring that each service

encapsulates a distinct business capability. This requires a deep understanding of the

business domain and the ability to abstract and model it correctly. Domain-Driven

Design (DDD) is often recommended to help identify and define service boundaries

by focusing on the core domains and subdomains of the business.

Another challenge is maintaining high cohesion within services while ensuring low

coupling between them. High cohesion means that the responsibilities of a service are

closely related, which makes the service easier to understand and maintain. Low

coupling, on the other hand, ensures that changes in one service do not overly affect

others, facilitating independent development and deployment.[10]

Advances in Intelligent Information Systems
VOLUME 9 ISSUE 4

[26]

Furthermore, legacy systems pose additional challenges. Decomposing a monolithic

application into microservices requires careful analysis and refactoring, which can be

time-consuming and risky. It often involves untangling tightly coupled code and

identifying clear boundaries for new services.

Lastly, organizational factors can also influence service decomposition. Aligning

services with team structures and ensuring that teams have the necessary skills and

autonomy to manage their services are critical for successful microservice adoption.

2. Strategies for Effective Decomposition
To address these challenges, several strategies can be employed for effective service

decomposition. One widely used approach is Domain-Driven Design (DDD). By

focusing on the core domains and subdomains, DDD helps to identify the different

bounded contexts within a business, which can then be mapped to individual

services.[11]

Event Storming is another technique that facilitates collaborative modeling of

business processes. This workshop-based approach involves domain experts and

developers working together to identify events, commands, and aggregates within the

system, which can help in defining service boundaries.

The Strangler Fig pattern is particularly useful for decomposing legacy monoliths.

This approach involves gradually creating new microservices around the edges of the

monolith, intercepting requests, and routing them to the new services. Over time, the

monolithic parts are replaced by microservices, allowing for incremental

refactoring.[12]

Another strategy is to start with vertical slices, which involve breaking down the

system by business capabilities or user journeys. This ensures that each service

provides end-to-end functionality, making it easier to test, deploy, and evolve

independently.

Additionally, leveraging tools and frameworks that support service decomposition can

be beneficial. Service mesh technologies, such as Istio, provide features like traffic

Advances in Intelligent Information Systems
VOLUME 9 ISSUE 4

[27]

management, security, and observability, which can help manage the complexities of

inter-service communication.

Finally, continuously revisiting and refining service boundaries is essential. As the

business evolves and new requirements emerge, service boundaries may need to be

adjusted to reflect the changing landscape.

B. Data Management

1. Issues with Distributed Data
Managing data in a microservices architecture presents several challenges due to the

distributed nature of the system. Each service typically has its own database, which

aligns with the principle of decentralized data management. However, this introduces

complexities in ensuring data consistency, integrity, and latency.[10]

One major issue is maintaining consistency across distributed data stores. In a

monolithic application, a single transaction can ensure atomicity, consistency,

isolation, and durability (ACID). In a microservices architecture, achieving ACID

properties across multiple services requires distributed transactions, which are

complex and can impact performance.[13]

Another challenge is data duplication and synchronization. Since services may need

to access data owned by other services, duplicating data can lead to inconsistencies if

not properly synchronized. Eventual consistency models, such as the BASE (Basically

Available, Soft state, Eventually consistent) approach, are often adopted, but they

require careful handling of data reconciliation and conflict resolution.[3]

Moreover, querying data across multiple services can be inefficient. In a monolithic

system, a single query can retrieve all necessary data from a single database. In a

microservices architecture, this may involve multiple calls to different services,

increasing latency and complexity.[14]

Data security and privacy also become more challenging with distributed data.

Ensuring that data is securely transmitted and stored across multiple services requires

robust encryption and access control mechanisms.

Another issue is data migration and schema evolution. As services evolve, their data

schemas may change. Coordinating these changes across multiple services and

ensuring backward compatibility can be difficult.

Lastly, handling data loss and recovery in a distributed environment requires robust

disaster recovery strategies. Ensuring that data is backed up and can be restored across

multiple services adds an extra layer of complexity.

2. Techniques for Ensuring Data Consistency
To address the challenges of distributed data management, several techniques can be

employed to ensure data consistency and integrity. One common approach is the use

of eventual consistency models, which allow for temporary inconsistencies with the

guarantee that the system will become consistent over time.[15]

Advances in Intelligent Information Systems
VOLUME 9 ISSUE 4

[28]

Event sourcing is a technique where changes to the application state are stored as a

sequence of events. This approach not only ensures consistency but also provides an

audit trail and allows for replaying events to reconstruct past states.

The Saga pattern is another technique for managing distributed transactions. It

involves breaking a transaction into a series of smaller, independent transactions that

are coordinated to achieve a consistent outcome. Each step in the saga is a local

transaction, and compensating transactions are used to undo changes if a step

fails.[16]

Command Query Responsibility Segregation (CQRS) is a pattern that separates read

and write operations into different models. This allows for optimized data

management and ensures that read and write operations are independently scalable.

To manage data duplication and synchronization, Change Data Capture (CDC) can be

employed. CDC involves monitoring and capturing changes in the data store and

propagating these changes to other services in real time, ensuring consistency across

distributed data stores.

Furthermore, ensuring robust data encryption and access control mechanisms is

crucial for data security. Implementing encryption-at-rest and encryption-in-transit,

along with fine-grained access control policies, can protect data from unauthorized

access.

For data migration and schema evolution, versioning strategies can be used. This

involves maintaining multiple versions of the data schema and ensuring backward

compatibility. Tools like Flyway and Liquibase can help automate and manage

database migrations.

Lastly, implementing a comprehensive backup and disaster recovery plan is essential.

Regular backups, along with procedures for restoring data across multiple services,

can ensure data availability and integrity in case of failures.

C. Inter-Service Communication

1. Communication Protocols and Patterns
Effective inter-service communication is crucial for the success of a microservices

architecture. There are various communication protocols and patterns that can be

employed, each with its own advantages and trade-offs.

a. Synchronous vs. Asynchronous Communication
Synchronous communication involves direct, real-time interaction between services.

This is typically implemented using HTTP/HTTPS protocols, where one service

makes a request and waits for a response from another service. The main advantage

of synchronous communication is its simplicity and ease of implementation.

However, it can lead to tight coupling and increased latency, especially if multiple

services need to be called sequentially.[4]

Advances in Intelligent Information Systems
VOLUME 9 ISSUE 4

[29]

On the other hand, asynchronous communication involves decoupled interaction,

where services communicate through message queues or event streams. This allows

services to operate independently and improves system resilience and scalability.

Asynchronous communication is implemented using protocols like AMQP (Advanced

Message Queuing Protocol) or systems like Apache Kafka. The downside is the

increased complexity in handling message delivery guarantees and ensuring eventual

consistency.[17]

b. REST, gRPC, and Messaging Systems
REST (Representational State Transfer) is a widely used protocol for synchronous

communication. It leverages standard HTTP methods and is stateless, making it

simple and scalable. However, REST can have performance limitations due to its text-

based nature and lack of support for streaming.[18]

gRPC (Google Remote Procedure Call) is an alternative that offers high-performance,

low-latency communication. It uses Protocol Buffers for serialization, which is more

efficient than JSON. gRPC also supports bidirectional streaming, making it suitable

for real-time applications. However, it requires a more complex setup and is less

human-readable compared to REST.[19]

Messaging systems like RabbitMQ or Apache Kafka are commonly used for

asynchronous communication. They provide reliable message delivery, support for

publish-subscribe patterns, and enable decoupled interaction between services. These

systems are highly scalable and fault-tolerant, but they require careful management

of message brokers and handling of message ordering and duplication.[11]

2. Problems and Solutions in Inter-Service Communication
Inter-service communication in a microservices architecture can present several

challenges, but there are strategies and solutions to address these issues effectively.

One common problem is service discovery and load balancing. As services are

dynamically scaled, their instances and locations may change. Implementing a service

discovery mechanism, such as Consul or Eureka, allows services to register

themselves and discover other services. Combined with load balancers, this ensures

that requests are distributed evenly across service instances.[12]

Another challenge is handling partial failures and retries. In a distributed system,

individual services may fail or become temporarily unavailable. Implementing circuit

breakers, such as those provided by Netflix Hystrix, can prevent cascading failures by

short-circuiting requests to failing services. Additionally, implementing retry

mechanisms with exponential backoff can help handle transient failures.[12]

Ensuring security in inter-service communication is also critical. Implementing

mutual TLS (mTLS) for secure communication between services can prevent man-in-

the-middle attacks. Additionally, using API gateways, such as Kong or Ambassador,

can provide centralized authentication, authorization, and rate-limiting.

Advances in Intelligent Information Systems
VOLUME 9 ISSUE 4

[30]

Latency and performance can be issues, especially in synchronous communication.

Implementing caching strategies, such as in-memory caches or distributed caches like

Redis, can reduce the need for repeated requests to the same service. Additionally,

using asynchronous communication for non-critical operations can improve overall

system responsiveness.[20]

Finally, monitoring and observability are essential for managing inter-service

communication. Implementing distributed tracing tools, such as Zipkin or Jaeger,

allows for tracking requests across services and identifying bottlenecks. Logging and

metrics collection tools, such as ELK stack (Elasticsearch, Logstash, and Kibana) or

Prometheus, provide insights into the health and performance of the system.[21]

D. Deployment and Orchestration

1. Containerization and Its Challenges
Containerization is a fundamental technology for deploying microservices, as it

provides a consistent runtime environment across different environments. However,

it introduces several challenges that need to be addressed for successful deployment.

One challenge is managing container images. Container images need to be built,

stored, and distributed efficiently. Ensuring that images are small, secure, and free

from vulnerabilities requires careful management. Tools like Docker and container

registries, such as Docker Hub or Amazon ECR, provide solutions for managing

container images.[19]

Another issue is resource management and isolation. Containers share the host OS

kernel, which can lead to resource contention and interference between services.

Implementing resource limits and quotas using tools like Kubernetes ensures that each

container gets the necessary resources without affecting others.[22]

Networking is also a challenge in containerized environments. Ensuring that

containers can communicate securely and efficiently requires setting up networking

policies and overlays. Service mesh technologies, such as Istio or Linkerd, provide

advanced networking features, including traffic management, security, and

observability.[4]

Security concerns are heightened with containerization. Ensuring that containers run

with the least privileges and are isolated from the host system is crucial. Implementing

security best practices, such as using non-root users, enabling AppArmor or SELinux,

and scanning images for vulnerabilities, can mitigate security risks.[23]

Another challenge is managing stateful applications in containers. While containers

are designed to be stateless, many applications require persistent storage. Solutions

like Kubernetes StatefulSets and storage orchestration tools, such as Rook or

Portworx, provide mechanisms for managing stateful applications in containerized

environments.[24]

Lastly, debugging and troubleshooting containers can be difficult due to their

ephemeral nature. Implementing robust logging and monitoring solutions, such as

Advances in Intelligent Information Systems
VOLUME 9 ISSUE 4

[31]

Fluentd, Prometheus, and Grafana, can provide insights into the behavior and

performance of containers.

2. Orchestration Tools and Best Practices
Orchestrating containers at scale requires robust tools and best practices to ensure

reliable and efficient deployment and management of microservices.

Kubernetes is the most widely used container orchestration platform. It provides

features for automating deployment, scaling, and managing containerized

applications. Kubernetes abstracts the underlying infrastructure and provides a

declarative approach to defining and managing resources.

One best practice is to use Infrastructure as Code (IaC) tools, such as Terraform or

Ansible, to provision and manage the underlying infrastructure. This ensures that the

infrastructure is versioned, reproducible, and consistent across environments.

Implementing continuous integration and continuous deployment (CI/CD) pipelines

is essential for automating the build, test, and deployment processes. Tools like

Jenkins, GitLab CI, or CircleCI integrate with Kubernetes to enable seamless

deployment of new code changes to the cluster.

Another best practice is to use namespaces and labels in Kubernetes to organize and

manage resources. Namespaces provide logical isolation, while labels and selectors

enable efficient grouping and querying of resources.

Configuring health checks and readiness probes ensures that containers are running

correctly and are ready to handle requests. Kubernetes provides mechanisms for

defining liveness and readiness probes, which help in detecting and recovering from

failures.

Implementing autoscaling policies ensures that the system can handle varying loads

efficiently. Kubernetes Horizontal Pod Autoscaler (HPA) and Vertical Pod Autoscaler

(VPA) provide mechanisms for automatically scaling pods based on resource

utilization.

Ensuring robust security practices is crucial. Implementing Role-Based Access

Control (RBAC) in Kubernetes ensures that users and services have the necessary

permissions without overprivileging. Additionally, using network policies to control

traffic flow between pods enhances security.

Lastly, monitoring and observability are essential for managing the health and

performance of the cluster. Implementing tools like Prometheus for metrics collection,

Grafana for visualization, and ELK stack for logging provides comprehensive

observability into the system.

Advances in Intelligent Information Systems
VOLUME 9 ISSUE 4

[32]

E. Security Concerns

1. Authentication and Authorization
Ensuring robust authentication and authorization mechanisms is critical for securing

microservices. Authentication verifies the identity of users or services, while

authorization determines their access rights.

Implementing OAuth 2.0 and OpenID Connect (OIDC) provides standardized

protocols for authentication and authorization. OAuth 2.0 allows applications to

obtain limited access to user accounts, while OIDC adds an identity layer on top of

OAuth 2.0 for authenticating users.

JSON Web Tokens (JWT) are commonly used for stateless authentication. JWTs are

compact, URL-safe tokens that can be used to securely transmit information between

parties. They are signed and can be verified to ensure data integrity and authenticity.

API gateways play a crucial role in managing authentication and authorization. They

act as a single entry point for all requests and can enforce security policies, such as

rate limiting, IP whitelisting, and request validation. Tools like Kong, Ambassador, or

AWS API Gateway provide comprehensive API management features.[25]

Implementing mutual TLS (mTLS) ensures that both the client and server authenticate

each other, providing an additional layer of security. mTLS is particularly useful for

securing inter-service communication in a microservices architecture.

Role-Based Access Control (RBAC) and Attribute-Based Access Control (ABAC) are

common authorization mechanisms. RBAC assigns permissions based on roles, while

ABAC evaluates attributes, such as user roles, resource types, and environmental

conditions, to determine access rights.

Moreover, implementing fine-grained access control policies ensures that services and

users have the minimum necessary permissions. This principle of least privilege

reduces the risk of unauthorized access and potential damage from compromised

accounts.

2. Data Privacy and Compliance
Ensuring data privacy and compliance with regulations is crucial for protecting

sensitive information and avoiding legal penalties. Several strategies and best

practices can be implemented to achieve this.

Data encryption is fundamental for protecting data at rest and in transit. Implementing

strong encryption algorithms, such as AES for data at rest and TLS for data in transit,

ensures that data is protected from unauthorized access.

Implementing data masking and anonymization techniques protects sensitive

information by obfuscating or removing identifiable data. This is particularly

important for complying with data protection regulations, such as GDPR or CCPA.

Advances in Intelligent Information Systems
VOLUME 9 ISSUE 4

[33]

Regular audits and compliance checks are essential for ensuring that the system

adheres to regulatory requirements. Implementing automated compliance tools and

conducting regular security assessments can help identify and address potential

vulnerabilities.

Ensuring data minimization involves collecting and processing only the necessary

data for a specific purpose. This reduces the risk of data breaches and simplifies

compliance with data protection regulations.

Implementing robust access controls and monitoring ensures that only authorized

users can access sensitive data. This includes implementing multi-factor

authentication (MFA) and logging access attempts for auditing purposes.

Data retention policies should be defined and enforced to ensure that data is stored

only for the required duration. Implementing automated data deletion mechanisms

ensures compliance with data retention regulations.

Lastly, implementing incident response plans ensures that the organization is prepared

to respond to data breaches or security incidents. This includes defining procedures

for detecting, reporting, and mitigating security incidents, as well as notifying affected

parties and regulatory authorities.

In conclusion, addressing architectural barriers in microservice design requires a

comprehensive approach that encompasses service decomposition, data management,

inter-service communication, deployment and orchestration, and security concerns.

By employing best practices and leveraging appropriate tools and techniques,

organizations can effectively manage the complexities of microservices and realize

their benefits.[26]

III. Strategies to Overcome Architectural Barriers

A. Best Practices in Service Decomposition

1. Domain-Driven Design (DDD)
Domain-Driven Design (DDD) is a strategic approach to software development that

prioritizes the core business domain and its logic. It begins with deep immersion into

the business domain to understand the challenges and opportunities that exist. By

focusing on domain models, DDD ensures that the software aligns closely with

business needs, making it more effective and efficient.[16]

The primary components of DDD include entities, value objects, aggregates, services,

repositories, and factories. Each of these elements plays a critical role in defining the

structure and behavior of the domain model. Entities are objects that have a distinct

identity, while value objects are immutable and devoid of identity. Aggregates are

clusters of entities and value objects that are treated as a single unit for data

changes.[7]

Furthermore, DDD emphasizes the importance of a ubiquitous language, a shared

language between developers and domain experts. This common language bridges the

Advances in Intelligent Information Systems
VOLUME 9 ISSUE 4

[34]

gap between technical and non-technical stakeholders, ensuring clear communication

and understanding. By fostering collaboration, DDD helps teams build software that

truly reflects the business domain.[6]

2. Event Storming and Context Mapping
Event Storming is a workshop-based technique that enables teams to explore complex

business processes by visualizing events that occur within the domain. It involves

gathering domain experts and developers to identify and map out domain events,

commands, and aggregates. This collaborative process helps uncover hidden insights

and dependencies, providing a holistic view of the domain.[27]

Context Mapping, on the other hand, focuses on defining boundaries within the

domain. It involves identifying bounded contexts, which are specific areas of the

domain with distinct models and responsibilities. By mapping out these contexts and

their relationships, teams can better understand how different parts of the system

interact and collaborate. This clarity helps in designing a modular and maintainable

architecture.[28]

Event Storming and Context Mapping are complementary techniques that provide a

comprehensive understanding of the domain. They facilitate effective

communication, promote shared understanding, and guide the design of a cohesive

and scalable system.

B. Advanced Data Management Techniques

1. CQRS (Command Query Responsibility Segregation)
CQRS is a design pattern that separates the responsibilities of handling commands

(write operations) and queries (read operations). By decoupling these concerns, CQRS

addresses the challenges of managing complex data interactions and improving

system performance.

In a CQRS architecture, the write model handles commands and updates the state of

the system, while the read model handles queries and retrieves data for presentation.

This separation allows each model to be optimized for its specific purpose. For

example, the write model can ensure strong consistency, while the read model can

leverage denormalized data structures for fast retrieval.[23]

CQRS also promotes scalability by enabling independent scaling of read and write

operations. As read operations often outnumber write operations in many applications,

this separation allows the system to handle high query loads efficiently. Additionally,

CQRS facilitates the implementation of event sourcing, where state changes are

captured as a sequence of events, providing a historical record of system changes.[29]

2. Event Sourcing
Event Sourcing is a pattern that ensures all changes to application state are stored as

a sequence of events. This approach provides an audit trail of all state changes,

enabling better traceability, debugging, and system recovery.

Advances in Intelligent Information Systems
VOLUME 9 ISSUE 4

[35]

In an event-sourced system, events are the primary source of truth. Instead of storing

the current state directly, the system stores a series of events that represent state

transitions. The current state can be derived by replaying these events in the order they

occurred. This approach not only ensures consistency but also allows for time travel

and historical analysis.[11]

Event Sourcing is particularly beneficial in systems with complex business logic and

frequent state changes. It provides a clear and auditable record of all state transitions,

making it easier to understand and debug the system. Additionally, by capturing the

intent behind state changes, Event Sourcing enables more meaningful analytics and

insights.[30]

C. Optimizing Inter-Service Communication

1. Implementing API Gateways
API Gateways act as intermediaries between clients and microservices, providing a

single entry point for requests. They offer several benefits, including request routing,

load balancing, authentication, and rate limiting. By centralizing these concerns, API

Gateways simplify the management of inter-service communication.[31]

One of the key advantages of API Gateways is their ability to aggregate multiple

service calls into a single request. This reduces the number of round trips between

clients and services, improving performance and reducing latency. Additionally, API

Gateways can perform protocol translation, enabling seamless communication

between services that use different protocols.[32]

API Gateways also enhance security by providing a centralized point for enforcing

authentication and authorization policies. They can integrate with identity providers,

validate tokens, and ensure that only authorized requests reach the services. This

centralized security management simplifies the implementation of security measures

across the system.[33]

2. Utilizing Service Meshes
Service Meshes provide a dedicated infrastructure layer for managing service-to-

service communication. They offer features such as traffic management, service

discovery, load balancing, and security. By abstracting these concerns from the

application code, Service Meshes simplify the development and operation of

microservices.[11]

Service Meshes consist of data planes and control planes. The data plane handles the

actual communication between services, while the control plane provides

configuration and management capabilities. This separation of concerns ensures that

communication policies can be centrally managed and enforced without modifying

the application code.[34]

One of the key benefits of Service Meshes is their ability to provide fine-grained

control over traffic routing. They can implement advanced traffic management

strategies, such as canary deployments and A/B testing, to ensure smooth rollouts and

Advances in Intelligent Information Systems
VOLUME 9 ISSUE 4

[36]

minimize the impact of changes. Additionally, Service Meshes enhance observability

by providing detailed metrics and tracing information for service interactions.[35]

D. Effective Deployment and Orchestration

1. Kubernetes and Container Orchestration
Kubernetes is an open-source container orchestration platform that automates the

deployment, scaling, and management of containerized applications. It provides a

robust and scalable infrastructure for running microservices, ensuring high

availability and efficient resource utilization.

Kubernetes abstracts the underlying infrastructure and provides a unified API for

managing containers. It allows developers to define desired states for their

applications using declarative configurations. Kubernetes then takes care of

maintaining the desired state by automatically provisioning, scaling, and healing

containers.[31]

One of the key features of Kubernetes is its support for rolling updates and rollbacks.

This enables seamless deployment of new versions of applications without downtime.

Kubernetes also provides built-in monitoring and logging capabilities, making it

easier to observe and troubleshoot applications.[36]

2. Continuous Integration/Continuous Deployment (CI/CD) Pipelines
CI/CD pipelines automate the process of building, testing, and deploying applications.

They enable rapid and reliable delivery of software changes, reducing the time and

effort required for manual deployments.

In a CI/CD pipeline, code changes are automatically built and tested whenever they

are committed to the version control system. This ensures that any issues are detected

early in the development process. Once the code passes all tests, it is automatically

deployed to the production environment, ensuring a consistent and repeatable

deployment process.[6]

CI/CD pipelines promote collaboration and accountability by providing a

standardized workflow for development and deployment. They enable teams to

deliver features and fixes more frequently and with higher confidence. Additionally,

CI/CD pipelines facilitate continuous feedback, allowing developers to quickly iterate

and improve their code.[37]

E. Enhancing Security Measures

1. Zero Trust Security Model
The Zero Trust security model is based on the principle of "never trust, always verify."

It assumes that threats can exist both inside and outside the network, and therefore,

every request must be authenticated and authorized regardless of its origin.[38]

In a Zero Trust architecture, access is granted based on the principle of least privilege.

Users and devices are only given the minimum permissions required to perform their

Advances in Intelligent Information Systems
VOLUME 9 ISSUE 4

[37]

tasks. Additionally, continuous monitoring and analysis of user behavior are

performed to detect and respond to suspicious activities.[39]

Zero Trust also emphasizes the importance of strong identity management and

multifactor authentication. By ensuring that only authorized users can access sensitive

resources, organizations can reduce the risk of unauthorized access and data breaches.

Network segmentation and micro-segmentation are also key components of Zero

Trust, as they limit the lateral movement of attackers within the network.[6]

2. Implementing Secure API Gateways
Secure API Gateways provide a centralized point for enforcing security policies and

protecting APIs from threats. They offer features such as authentication, authorization,

rate limiting, and threat detection. By securing the entry point to the system, API

Gateways ensure that only legitimate requests reach the services.[40]

Authentication mechanisms supported by API Gateways include OAuth, JWT, and

API keys. These mechanisms ensure that only authenticated users and applications

can access the APIs. Authorization policies can be enforced based on user roles and

permissions, ensuring that users only have access to the resources they are authorized

to use.[41]

API Gateways also provide protection against common security threats, such as SQL

injection, cross-site scripting (XSS), and distributed denial-of-service (DDoS) attacks.

They can inspect incoming requests for malicious patterns and block or rate-limit

suspicious traffic. Additionally, API Gateways can integrate with security information

and event management (SIEM) systems to provide real-time monitoring and

alerting.[31]

By implementing Secure API Gateways, organizations can enhance the security of

their microservices architecture and protect sensitive data from unauthorized access

and attacks.

IV. Case Studies and Real-World Applications (Optional)

A. Successful Microservice Implementations
The adoption of microservices architecture has become increasingly popular in recent

years due to its ability to enhance scalability, flexibility, and agility in software

development. Several companies have successfully transitioned to or implemented

microservices, showcasing the benefits and challenges of this architectural style.[6]

1. Company A
Company A, a leading e-commerce platform, made the strategic decision to transition

from a monolithic architecture to microservices to better handle its growing user base

and transaction volume. The monolithic architecture had become a bottleneck,

causing frequent downtimes and slow development cycles.[2]

By breaking down its application into smaller, independent services, Company A

achieved several key benefits:

Advances in Intelligent Information Systems
VOLUME 9 ISSUE 4

[38]

-Improved Scalability: Each microservice could be scaled independently based on

demand. For instance, the user authentication service could be scaled separately from

the product catalog service, ensuring better resource utilization and cost efficiency.

-Enhanced Development Speed: Teams could work on different services

simultaneously without causing disruptions to other parts of the application. This

parallel development approach led to faster release cycles and quicker deployment of

new features.

-Increased Reliability: By isolating failures to individual services, the overall system

became more resilient. For example, if the payment processing service encountered

issues, it would not bring down the entire platform.

- Better Technology Stack Choices: Teams had the freedom to choose the most

appropriate technology stack for each service. For instance, the recommendation

engine was implemented using a machine learning framework, while the inventory

management service utilized a traditional relational database.[34]

Company A's transition to microservices not only improved system performance but

also fostered a culture of innovation and continuous improvement within the

organization.

2. Company B
Company B, a global financial services provider, faced challenges with its legacy

systems, which were hindering its ability to quickly adapt to market changes and

regulatory requirements. The monolithic nature of its applications led to lengthy

deployment cycles and difficulty in maintaining the codebase.[31]

To address these issues, Company B embarked on a microservices journey with the

following objectives:

-Regulatory Compliance: By modularizing its services, Company B could quickly

implement and update compliance-related features without affecting the entire

system. This agility was crucial in a heavily regulated industry.

-Enhanced Security: Microservices allowed for more granular security measures.

Each service could have its own security protocols, reducing the risk of widespread

breaches. For example, the service handling sensitive customer data had additional

layers of encryption and authentication.

-Operational Efficiency: With microservices, Company B adopted a DevOps culture,

automating its deployment pipelines and improving operational efficiency.

Continuous integration and continuous deployment (CI/CD) practices ensured that

new features and bug fixes were released more frequently and reliably.

-Cost Management: The ability to scale services independently allowed Company B

to optimize its infrastructure costs. Services with higher demand during specific times,

such as the trading platform during market hours, could be scaled up as needed.

Advances in Intelligent Information Systems
VOLUME 9 ISSUE 4

[39]

The successful implementation of microservices enabled Company B to stay

competitive, innovate rapidly, and meet the evolving needs of its customers while

ensuring compliance and security.

B. Lessons Learned from Failures
While microservices offer numerous advantages, their implementation can be fraught

with challenges. Several organizations have faced setbacks and failures in their

microservices initiatives. Analyzing these failures provides valuable insights and

lessons for future implementations.

1. Case Study Analysis
Case Study X: A large media streaming company attempted to migrate its monolithic

application to microservices. However, the project encountered significant issues:

- Overly Complex Architecture: The company initially designed an overly complex

microservices architecture with hundreds of services. This led to difficulties in

managing inter-service communication and debugging issues. The lack of clear

boundaries between services resulted in tight coupling, defeating the purpose of

microservices.[6]

-Inadequate Monitoring and Logging: The absence of comprehensive monitoring

and logging mechanisms made it challenging to identify and resolve issues. Without

visibility into service performance and failures, troubleshooting became a time-

consuming process.

- Cultural Resistance: The transition to microservices required a shift in organizational

culture and mindset. Resistance from teams accustomed to the monolithic approach

hindered collaboration and slowed down the adoption process. The lack of proper

training and education exacerbated the problem.[42]

-Data Management Challenges: Managing data consistency across services proved

to be a significant hurdle. The company struggled with implementing effective

distributed transactions and maintaining data integrity, leading to inconsistencies and

data loss.

Case Study Y: A healthcare technology provider faced challenges in its microservices

implementation:

-Service Granularity Issues: The company initially adopted too fine-grained

services, resulting in excessive inter-service communication and latency. The

overhead of managing numerous small services outweighed the benefits, leading to

performance degradation.

-Deployment Complexity: The lack of automated deployment pipelines caused

delays and errors during service deployments. Manual deployment processes were

error-prone and time-consuming, impacting the overall reliability of the system.

Advances in Intelligent Information Systems
VOLUME 9 ISSUE 4

[40]

-Dependency Management: Managing dependencies between services became

increasingly difficult as the number of services grew. Versioning conflicts and

compatibility issues arose, causing downtime and disruptions.

-Security Vulnerabilities: The decentralized nature of microservices introduced new

security challenges. Inadequate security measures, such as improper authentication

and authorization, exposed the system to potential threats and breaches.

2. Mitigation Strategies
To address the challenges and failures encountered in microservices implementations,

organizations can adopt several mitigation strategies:

-Simplify Architecture: Start with a simpler architecture and gradually evolve it.

Avoid creating an excessively complex network of services. Clearly define service

boundaries and ensure loose coupling between services to enhance maintainability.

- Invest in Monitoring and Logging: Implement comprehensive monitoring and

logging solutions to gain visibility into service performance and failures. Utilize tools

like Prometheus, Grafana, and ELK stack to monitor metrics, logs, and traces. Real-

time monitoring helps in quickly identifying and resolving issues.[43]

-Foster a DevOps Culture: Promote a DevOps culture within the organization to

facilitate collaboration between development and operations teams. Encourage the

adoption of CI/CD practices to automate deployment pipelines and ensure faster, more

reliable releases.

-Provide Training and Education: Invest in training programs to educate teams

about microservices architecture, best practices, and tools. Address cultural resistance

by highlighting the benefits and potential of microservices.

-Implement Data Management Best Practices: Adopt strategies like event-driven

architecture, eventual consistency, and distributed transactions to manage data

consistency across services. Utilize databases that support distributed transactions and

ensure data integrity.

-Optimize Service Granularity: Strike a balance between service granularity and

performance. Avoid creating overly fine-grained services that lead to excessive

communication overhead. Design services based on business capabilities and ensure

they are independently deployable.

-Enhance Security Measures: Implement robust security measures for each service,

including authentication, authorization, encryption, and API gateways. Conduct

regular security audits and penetration testing to identify and address vulnerabilities.

-Manage Dependencies Effectively: Establish clear dependency management

practices, including versioning and compatibility testing. Utilize tools like Docker and

Kubernetes to manage service deployments and ensure consistency across

environments.

Advances in Intelligent Information Systems
VOLUME 9 ISSUE 4

[41]

-Continuous Improvement: Embrace a culture of continuous improvement by

regularly reviewing and refining the microservices architecture. Gather feedback from

teams and stakeholders to identify areas for enhancement and optimization.

By learning from past failures and adopting these mitigation strategies, organizations

can navigate the complexities of microservices and achieve successful

implementations that drive innovation and business growth.

V. Conclusion

A. Summary of Key Findings

1. Recap of Identified Barriers
In our comprehensive analysis of microservice architecture, several key barriers to

successful implementation were identified. A significant challenge is the complexity

involved in designing and maintaining microservices. Unlike monolithic

architectures, microservices require careful planning of service boundaries and inter-

service communication. This complexity can lead to increased development time and

a steeper learning curve for development teams.[10]

Another major barrier is the difficulty in achieving data consistency and integrity.

Microservices often operate with their own databases, necessitating complex

transactions and eventual consistency models. This can be particularly challenging in

highly transactional systems where atomicity and isolation are critical.[4]

Operational challenges also emerge prominently as barriers. Monitoring, logging, and

debugging distributed systems are inherently more complex due to the decentralized

nature of microservices. Teams must adopt sophisticated tools and practices to

manage these aspects effectively. Moreover, deploying and orchestrating

microservices demand robust infrastructure and automation tools, which can be

resource-intensive and require specialized skill sets.[44]

Security is another critical barrier. Each microservice can become a potential attack

vector, requiring stringent security measures across the entire ecosystem. This

necessitates a comprehensive approach to security that includes authentication,

authorization, encryption, and regular security audits.

2. Overview of Suggested Strategies
To address these barriers, several strategies were proposed. For managing complexity,

adopting domain-driven design (DDD) and bounded contexts can help in defining

clear service boundaries. Implementing well-defined APIs and using API gateways

can streamline inter-service communication and management.

For data consistency, employing patterns like Saga and Event Sourcing can help

maintain consistency across distributed services. These patterns allow for handling

complex transactions and maintaining system state without compromising on the

benefits of microservices.

Advances in Intelligent Information Systems
VOLUME 9 ISSUE 4

[42]

Operational challenges can be mitigated by leveraging modern DevOps practices.

Continuous integration and continuous deployment (CI/CD) pipelines,

containerization with Docker, and orchestration with Kubernetes can significantly

enhance the efficiency and reliability of microservice deployments. Additionally,

implementing centralized logging and monitoring solutions like ELK stack and

Prometheus can provide better visibility into system performance and health.[45]

To bolster security, adopting a zero-trust security model, where each service must

authenticate and authorize every request, can significantly enhance the security

posture. Regular penetration testing and security reviews, along with employing

security best practices such as TLS encryption and secret management, are crucial in

safeguarding the microservice ecosystem.[18]

B. Implications for Future Research

1. Emerging Trends in Microservice Architecture
The field of microservice architecture is rapidly evolving, with several emerging

trends warranting attention. One such trend is the adoption of serverless computing,

which abstracts away the underlying infrastructure, allowing developers to focus

solely on writing code. Serverless architectures can complement microservices by

providing highly scalable and cost-efficient solutions for specific use cases.[31]

Another trend is the increasing use of service mesh technologies like Istio and

Linkerd. Service meshes provide advanced traffic management, security, and

observability features, which can simplify the management of microservices at scale.

These tools abstract the complexities of service-to-service communication and allow

for more fine-grained control over traffic policies and security measures.[6]

Edge computing is also gaining traction as a complement to microservice

architectures. By processing data closer to the source (i.e., at the edge of the network),

edge computing can reduce latency and bandwidth usage, which is particularly

beneficial for applications requiring real-time processing and low-latency

responses.[40]

2. Potential Areas for Further Investigation
Several areas within microservice architecture merit further investigation. One area is

the development of more efficient and scalable data consistency mechanisms. While

patterns like Saga and Event Sourcing provide solutions, there is a need for more

robust frameworks that can handle complex transactions with minimal overhead.[37]

Another area is the exploration of AI and machine learning techniques to automate

the management and optimization of microservices. For instance, predictive analytics

can be used to anticipate and mitigate potential issues before they impact the system.

Similarly, machine learning models can optimize resource allocation and scaling

decisions in real-time.[46]

The impact of microservice architecture on organizational culture and team dynamics

is another critical area. Research into best practices for structuring teams and fostering

Advances in Intelligent Information Systems
VOLUME 9 ISSUE 4

[43]

collaboration in a microservice environment can provide valuable insights for

organizations transitioning to this architecture.

C. Final Thoughts

1. Importance of Continuous Evolution in Microservice Design
The landscape of software development is continually evolving, and so too must the

design and practices surrounding microservices. Continuous evolution in

microservice design is crucial to staying competitive and addressing the ever-

changing demands of the industry. This includes staying abreast of new technologies,

patterns, and best practices that can improve the efficiency, scalability, and reliability

of microservice-based systems.[34]

Adopting a mindset of continuous improvement and learning within development

teams is essential. This involves regularly revisiting and refining service boundaries,

exploring new tools and frameworks, and integrating feedback from production

systems to drive improvements. By fostering a culture of innovation and agility,

organizations can ensure that their microservice architectures remain robust and

adaptable to future challenges.[6]

2. Call to Action for Practitioners and Researchers
For practitioners, the call to action is to embrace the complexities and challenges of

microservice architecture as opportunities for growth and innovation. This involves

not only adopting the latest technologies and practices but also contributing to the

broader community through knowledge sharing, open-source contributions, and

collaboration.[10]

Researchers are encouraged to delve deeper into the unresolved challenges and

emerging trends within microservice architecture. By conducting rigorous studies and

developing new methodologies, researchers can significantly advance the field and

provide valuable insights that can guide practitioners in their implementations.[47]

In conclusion, the journey towards mastering microservice architecture is ongoing and

multifaceted. By continuously evolving our practices, embracing new technologies,

and fostering a collaborative community, we can unlock the full potential of

microservices and drive the next wave of innovation in software development.

References

[1] Q.L., Xiang "Faas migration approach for monolithic applications based on

dynamic and static analysis." Ruan Jian Xue Bao/Journal of Software 33.11 (2022):

4061-4083

[2] S., Luo "Erms: efficient resource management for shared microservices with sla

guarantees." International Conference on Architectural Support for Programming

Languages and Operating Systems - ASPLOS (2022): 62-77

[3] N., Kratzke "Cloud-native observability: the many-faceted benefits of structured

and unified logging—a multi-case study." Future Internet 14.10 (2022)

Advances in Intelligent Information Systems
VOLUME 9 ISSUE 4

[44]

[4] Jani, Y. "Spring boot for microservices: Patterns, challenges, and best practices."

European Journal of Advances in Engineering and Technology 7.7 (2020): 73-78.

[5] E.D., Giovanni "Event-driven approach in microservices architecture for flight

booking simulation." ICIC Express Letters 16.5 (2022): 545-553

[6] F., Aydemir "Building a performance efficient core banking system based on the

microservices architecture." Journal of Grid Computing 20.4 (2022)

[7] H.F., Martinez "Computational and communication infrastructure challenges for

resilient cloud services." Computers 11.8 (2022)

[8] C., Carrión "Kubernetes as a standard container orchestrator - a bibliometric

analysis." Journal of Grid Computing 20.4 (2022)

[9] S., Ashok "Leveraging service meshes as a new network layer." HotNets 2021 -

Proceedings of the 20th ACM Workshop on Hot Topics in Networks (2021): 229-236

[10] D.M., Le "Generating multi-platform single page applications: a hierarchical

domain-driven design approach." ACM International Conference Proceeding Series

(2022): 344-351

[11] C., Lee "Enhancing packet tracing of microservices in container overlay networks

using ebpf." ACM International Conference Proceeding Series (2022): 53-61

[12] Z., Zhou "Aquatope: qos-and-uncertainty-aware resource management for multi-

stage serverless workflows." International Conference on Architectural Support for

Programming Languages and Operating Systems - ASPLOS (2022): 1-14

[13] C., von Perbandt "Development support for intelligent systems: test, evaluation,

and analysis of microservices." Lecture Notes in Networks and Systems 294 (2022):

857-875

[14] M.R.S., Sedghpour "Service mesh and ebpf-powered microservices: a survey and

future directions." Proceedings - 16th IEEE International Conference on Service-

Oriented System Engineering, SOSE 2022 (2022): 176-184

[15] C., Zhang "Tracecrl: contrastive representation learning for microservice trace

analysis." ESEC/FSE 2022 - Proceedings of the 30th ACM Joint Meeting European

Software Engineering Conference and Symposium on the Foundations of Software

Engineering (2022): 1221-1232

[16] X., Peng "Trace analysis based microservice architecture measurement."

ESEC/FSE 2022 - Proceedings of the 30th ACM Joint Meeting European Software

Engineering Conference and Symposium on the Foundations of Software Engineering

(2022): 1589-1599

[17] C., Ramon-Cortes "A survey on the distributed computing stack." Computer

Science Review 42 (2021)

Advances in Intelligent Information Systems
VOLUME 9 ISSUE 4

[45]

[18] M.M., Garcia "Learn microservices with spring boot: a practical approach to

restful services using an event-driven architecture, cloud-native patterns, and

containerization." Learn Microservices with Spring Boot: A Practical Approach to

RESTful Services Using an Event-Driven Architecture, Cloud-Native Patterns, and

Containerization (2020): 1-426

[19] E., Haihong "Distributed cloud monitoring platform based on log in-sight."

Lecture Notes of the Institute for Computer Sciences, Social-Informatics and

Telecommunications Engineering, LNICST 322 LNICST (2020): 76-88

[20] Y., Lee "Using refactoring to migrate rest applications to grpc." Proceedings of

the 2022 ACMSE Conference - ACMSE 2022: The Annual ACM Southeast

Conference (2022): 219-223

[21] B., Chen "Studying the use of java logging utilities in the wild." Proceedings -

International Conference on Software Engineering (2020): 397-408

[22] E., Daraghmi "Enhancing saga pattern for distributed transactions within a

microservices architecture." Applied Sciences (Switzerland) 12.12 (2022)

[23] J.P., Vitorino "Iotmapper: a metrics aggregation system architecture in support of

smart city solutions." Sensors 22.19 (2022)

[24] X., Yu "Design and implementation of vsto-based online compilation teaching

system for c language." ACM International Conference Proceeding Series (2022):

481-486

[25] S., Park "Machine learning based signaling ddos detection system for 5g stand

alone core network." Applied Sciences (Switzerland) 12.23 (2022)

[26] C., Carrión "Kubernetes scheduling: taxonomy, ongoing issues and challenges."

ACM Computing Surveys 55.7 (2022)

[27] F., Basciftci "Strategies for request-response logging in microservices

architecture." SISY 2022 - IEEE 20th Jubilee International Symposium on Intelligent

Systems and Informatics, Proceedings (2022): 121-126

[28] M.R., Islam "Code smell prioritization with business process mining and static

code analysis: a case study." Electronics (Switzerland) 11.12 (2022)

[29] T.C., Dao "V-endpoint: decentralized endpoint for blockchain applications based

on spark and byzantine consensus." ACM International Conference Proceeding Series

(2022): 427-434

[30] W., Wang "Design and implementation of an ar inspection system for an

unmanned gas transmission station." Proceedings - 2022 8th Annual International

Conference on Network and Information Systems for Computers, ICNISC 2022

(2022): 284-289

Advances in Intelligent Information Systems
VOLUME 9 ISSUE 4

[46]

[31] A., Bombini "A cloud-native web application for assisted metadata generation

and retrieval: thespian-ner †." Applied Sciences (Switzerland) 12.24 (2022)

[32] S.P., Ma "Microservice migration using strangler fig pattern and domain-driven

design." Journal of Information Science and Engineering 38.6 (2022): 1285-1303

[33] S., Weerasinghe "Taxonomical classification and systematic review on

microservices." International Journal of Engineering Trends and Technology 70.3

(2022): 222-233

[34] W., Li "On the vulnerability proneness of multilingual code." ESEC/FSE 2022 -

Proceedings of the 30th ACM Joint Meeting European Software Engineering

Conference and Symposium on the Foundations of Software Engineering (2022): 847-

859

[35] S., Chouliaras "Auto-scaling containerized cloud applications: a workload-driven

approach." Simulation Modelling Practice and Theory 121 (2022)

[36] Q., Gao "Design and implementation of an edge container management platform

based on artificial intelligence." ACM International Conference Proceeding Series

(2022): 257-261

[37] B., Schmeling "Kubernetes native development: develop, build, deploy, and run

applications on kubernetes." Kubernetes Native Development: Develop, Build,

Deploy, and Run Applications on Kubernetes (2022): 1-398

[38] Y., Yi "Design and implementation of course review system." ACM International

Conference Proceeding Series (2022): 137-142

[39] C., Kavitha "Imapc: inner mapping combiner to enhance the performance of

mapreduce in hadoop." Electronics (Switzerland) 11.10 (2022)

[40] I., Cosmina "Pivotal certified professional core spring 5 developer exam: a study

guide using spring framework 5: second edition." Pivotal Certified Professional Core

Spring 5 Developer Exam: A Study Guide Using Spring Framework 5: Second Edition

(2019): 1-1007

[41] B., Mayer "An approach to extract the architecture of microservice-based

software systems." Proceedings - 12th IEEE International Symposium on Service-

Oriented System Engineering, SOSE 2018 and 9th International Workshop on Joint

Cloud Computing, JCC 2018 (2018): 21-30

[42] P., Raj "Cloud-native computing: how to design, develop, and secure

microservices and event-driven applications." Cloud-native Computing: How to

Design, Develop, and Secure Microservices and Event-Driven Applications (2022):

1-331

[43] M., Mena "A progressive web application based on microservices combining

geospatial data and the internet of things." IEEE Access 7 (2019): 104577-104590

Advances in Intelligent Information Systems
VOLUME 9 ISSUE 4

[47]

[44] Y., Liu "Assessing database contribution via distributed tracing for microservice

systems." Applied Sciences (Switzerland) 12.22 (2022)

[45] L., Chen "Seaf: a scalable, efficient, and application-independent framework for

container security detection." Journal of Information Security and Applications 71

(2022)

[46] U., Zdun "Emerging trends, challenges, and experiences in devops and

microservice apis." IEEE Software 37.1 (2020): 87-91

[47] V., Thrivikraman "Misertrace: kernel-level request tracing for microservice

visibility." ICPE 2022 - Companion of the 2022 ACM/SPEC International Conference

on Performance Engineering (2022): 77-80

