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Abstract  
With the proliferation of big data across many domains, there is an increasing need for 

advanced analytical methods that can uncover latent patterns and extract useful 

knowledge from massive, multidimensional datasets. Tensor decompositions offer a 

powerful approach for large-scale data mining by representing higher-order data arrays 

as a multilinear model via decomposition into factor matrices. This allows for 

dimensionality reduction while preserving the essential structure and relationships 

within the data. In this paper, we provide a comprehensive overview of tensor 

decompositions for data mining, including the mathematical foundations, algorithms, 

applications, and software implementations. We focus on the two most widely used 

techniques: CANDECOMP/PARAFAC (CP) and Tucker decompositions. Through 

detailed numerical examples on real-world datasets, we demonstrate how tensor 

decompositions can be utilized for latent pattern discovery in areas such as social 

network analysis, neuroimaging analysis, recommender systems, and text mining. We 

also discuss computational aspects and scalability challenges associated with applying 

tensor methods to massive datasets. Overall, tensor decompositions provide versatile 

tools for uncovering hidden signals in big data, with tremendous potential for gaining 

actionable insights across many domains. 
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Introduction  
The rapid expansion of data volume, velocity, and variety in the contemporary era of 

big data presents a spectrum of both opportunities and challenges for knowledge 

discovery and pattern recognition. The proliferation of data collected from diverse 

sources offers the potential to unveil previously undiscovered relationships and attain 

profound insights [1]. However, the sheer magnitude and intricacy of 

multidimensional big data pose a formidable obstacle to the direct analysis and 

interpretation of raw data in its entirety. In this context, tensor decompositions emerge 

as a pivotal unsupervised learning method tailored for large-scale data mining 
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endeavors. By disassembling higher-order data arrays into lower-order factors, tensor 

methods facilitate essential functionalities such as dimensionality reduction, latent 

structure discovery, feature extraction, and subspace clustering within massive, 

multidimensional datasets [2]. 

The advent of big data has ushered in an era where traditional data processing 

techniques often fall short in effectively handling the vast and intricate datasets that 

characterize contemporary information landscapes [3]. The three V's of big data – 

volume, velocity, and variety – encapsulate the magnitude, speed, and diversity of data 

sources, respectively. This surge in data dimensions creates a dual landscape of 

promise and complexity. On the promising side, the unprecedented scale and diversity 

of data provide an extensive canvas for exploration, offering the potential to uncover 

hidden patterns, correlations, and insights that were previously elusive. Conversely, 

the complex nature of multidimensional big data presents a formidable challenge, 

necessitating innovative approaches to extract meaningful information and 

knowledge. 

Tensor decompositions stand out as a sophisticated and potent technique in addressing 

the challenges posed by large-scale, multidimensional datasets. These 

decompositions, by breaking down high-order data arrays into lower-order 

components, enable a more manageable representation of the underlying structure 

within the data. One of the primary advantages lies in the realm of dimensionality 

reduction [4]. The ability to distill complex data into lower-dimensional forms not 

only facilitates more efficient storage and processing but also enhances the 

interpretability of the data. In essence, tensor methods serve as a conduit for 

transforming unwieldy datasets into a more digestible format, thereby laying the 

groundwork for subsequent analysis and interpretation. Moreover, tensor 

decompositions play a crucial role in latent structure discovery within big data. The 

intricate relationships and hidden structures inherent in massive datasets often elude 

conventional analysis techniques. Tensor methods, by virtue of their ability to unveil 

latent factors within the data, contribute significantly to revealing underlying patterns 

and structures. This latent structure discovery is instrumental in enhancing our 

understanding of complex systems, identifying key influencers, and refining 

predictive models. In the context of knowledge discovery, the capability of tensor 

decompositions to expose latent structures opens avenues for novel insights and a 

deeper comprehension of the underlying dynamics driving the observed data patterns. 

Figure 1.  
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Feature extraction represents another pivotal application of tensor methods in the 

realm of big data analytics. As datasets grow in size and complexity, the challenge of 

identifying and extracting relevant features becomes increasingly daunting. Tensor 

decomposition offers an elegant solution by isolating essential features embedded 

within the multidimensional data. This process not only streamlines subsequent 

analysis but also contributes to the development of more robust and efficient machine 

learning models. By distilling the salient features from the expansive dataset, tensor 

methods empower practitioners to focus on the most relevant aspects of the data, 

fostering more accurate and meaningful outcomes in various applications, from image 

recognition to natural language processing. Furthermore, tensor decompositions excel 

in subspace clustering, a critical task in the analysis of multidimensional datasets [5]. 

The inherent complexity of high-dimensional data often leads to the presence of 

subspaces lower-dimensional structures within the overall data space. Identifying and 

clustering these subspaces is fundamental for discerning distinct patterns and groups 

within the data. Tensor methods, through their ability to capture the underlying 

structure of data in a lower-dimensional space, prove invaluable in the task of 

subspace clustering. This not only aids in grouping similar data points but also 

contributes to the identification of outliers and anomalies, enhancing the overall 

robustness of the analytical process [6]. 

Tensors provide a natural way to represent multidimensional data arrays, which 

frequently arise in domains such as social network analysis, neuroimaging, 

chemometrics, signal processing, and more. For example, a social network can be 

characterized by a 3-way tensor with modes corresponding to users, friends, and 

interactions. An image collection forms a 3-way tensor with pixels, colors, and images 

as modes. Even ordinary data tables are 2-way tensors. While vectors and matrices 

(1st and 2nd order tensors) can be analyzed using well-established methods like PCA 

and SVD, these techniques do not extend easily to higher-order tensors. Tensor 

decompositions provide the required mathematical framework and computational 

tools to harness the rich information content in multidimensional datasets [7]. 

This paper aims to provide a comprehensive overview of tensor decomposition 

methods for uncovering latent patterns and extracting knowledge from large-scale, 

multidimensional data. We begin with the mathematical preliminaries of tensor basics 

and multilinear algebra. We then describe the two most widely used techniques: 

CANDECOMP/PARAFAC (CP) decomposition which yields a sum of rank-one 

tensor components, and Tucker decomposition which provides a core tensor 

transformed by factor matrices along each mode. After reviewing the underlying 

models and algorithms, we discuss various applications of tensor decompositions in 

domains like web data mining, neuroscience, signal processing, and recommender 

systems. Through detailed numerical examples on real datasets, we demonstrate how 

tensor methods can uncover latent components and interactions in large datasets. We 

also address computational challenges and software tools available. Overall, this paper 

highlights the tremendous potential of tensor decompositions for gaining fundamental 

insights and hidden structure from big multidimensional data [8]. 

Tensor Preliminaries 
A tensor is formally defined as a multidimensional array, where an Nth order tensor 

belongs to the tensor product of N vector spaces, each representing a distinct mode or 
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aspect of the tensor. For instance, a matrix is a 2nd order tensor, characterized by rows 

and columns as its modes, while a 3rd order tensor comprises three modes. The order 

or dimensionality of a tensor is interchangeably termed as its way or mode [9]. 

Figure 2.  

 
Several fundamental concepts in tensor algebra contribute to a comprehensive 

understanding of tensors. Fibers, akin to higher-order analogs of matrix rows and 

columns, are derived by fixing all indices except one. Slices, on the other hand, denote 

2D sections of a tensor and are defined by fixing all but two indices. Tensor 

multiplication extends the principles of matrix multiplication to higher orders [10]. 

The rank of a tensor is identified as the minimum number of rank-one tensors essential 

to generate the tensor as their summation. The mode-n product of a tensor with a 

matrix corresponds to the matrix multiplication of each mode-n fiber with the matrix. 

Additionally, the Kronecker product serves as an implementation of the tensor product 

of two matrices [11]. The primary objective of tensor decompositions lies in obtaining 

low-rank approximations of higher-order tensors. This is achieved by representing 

tensors as sums of outer products of vectors, essentially rank-one tensors. Such 

decompositions facilitate compression and dimensionality reduction. Among the 

various techniques, the CP (Candecomp/Parafac) and Tucker decompositions emerge 

as the most widely adopted methods for achieving this goal. These methods play a 

crucial role in applications where handling high-dimensional data efficiently is 

paramount, providing a formalized approach to tensor analysis and manipulation. 

Table 1 provides a summary of key tensor concepts and notation [12]. 

Table 1: Tensor terminology and notation 

Tensor Concept Definition 

Order Number of dimensions (modes/ways) of a tensor 

Rank Minimum number of rank-one tensors required to 
generate a tensor 

Mode Dimensionality of a tensor, analogous to matrix 
rows/columns 

Fibers Higher-order analogue of matrix rows/columns 

Slices 2D sections of a tensor obtained by fixing all but two 
indices 
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Tensor 
multiplication 

Generalization of matrix multiplication to tensor 
contraction 

Kronecker product Tensor product of two matrices 

Mode-n product Multiplication of a tensor by a matrix in mode-n 
 

CP Decomposition  
The CANDECOMP/PARAFAC (CP) decomposition, developed in the 1970s, 

expresses a tensor as the sum of rank-one component tensors. Mathematically, for an 

Nth order tensor X, the CP decomposition is: 

 

𝑋 = ∑ 𝑅𝑟 = 1𝜆𝑟𝑎𝑟 ∘ 𝑏𝑟 ∘ 𝑐𝑟 ∘ … 

 

Where λr are weights, and ar, br, cr, ... are factor vectors. R is the rank, i.e. number of 

components. The symbol ∘ denotes vector outer product. Each component tensor on 

the right-hand side is the outer product of N factor vectors, hence rank-one [13].  

The CP model can be interpreted as expressing the higher-order tensor X as a sum of 

R rank-one tensors. Each component captures a latent pattern in the data, formed by 

the outer product of factors along each mode [14]. CP decomposition thus provides a 

compressed representation via dimensionality reduction, with the factors containing 

the essential information.  

Estimating the CP model involves computation of the factor matrices A, B, C such 

that the model best approximates the original tensor in a least squares sense. Various 

algorithms exist for fitting the CP model, such as alternating least squares and 

gradient-based methods. The model optimization can be sensitive to initialization and 

may converge to local optima [15].  

The key advantages of CP decomposition are its simplicity, unique decomposition 

under mild conditions, and interpretability. The uncompressed form directly provides 

the latent patterns and relationships. It is also scalable to large datasets. However, 

difficulty in computation and non-uniqueness of solutions can be limitations for some 

applications. 

Tucker Decomposition 
The Tucker decomposition expresses a tensor via a core tensor transformed by a 

matrix along each mode. For a 3rd order tensor X, the Tucker model is:  

 

𝑋 =  𝐺 𝑥1 𝐴 𝑥2 𝐵 𝑥3 𝐶 

 

Where G is the core tensor, and A, B, C are factor matrices for the three modes. The 

core tensor captures the interaction between the factors. The number of components 

in each mode is given by the dimensionality of the corresponding factor matrix.  

Unlike CP, the Tucker decomposition is not unique. Different rotations of the factor 

matrices can generate the same reconstructed tensor. A variant called Higher-order 

SVD (HOSVD) provides a structured Tucker model by using singular vectors of the 

mode-n unfoldings as factor matrices. 

Estimating the Tucker model involves optimization of the core tensor and factor 

matrices [16]. Algorithms like higher-order orthogonal iteration and alternating least 

squares are commonly employed. Tucker models can be computed more efficiently 
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than CP, but are less interpretable. The core tensor may also have higher storage costs 

than CP for sparse data.  

The Tucker decomposition provides a more flexible model than CP, with the core 

tensor capturing interactions. It remains interpretable via the factors, and can handle 

sparse, incomplete datasets. However, non-uniqueness and rotational freedom make 

the results more dependent on algorithm initialization and design choices.  

Applications and Examples  
Tensor decompositions have emerged as powerful tools with diverse applications 

across various domains. Their ability to analyze complex, multidimensional data has 

been particularly valuable in fields such as chemometrics, signal processing, 

neuroscience, web mining, computer vision, and recommender systems. In social 

network analysis, where the data forms a 3-way tensor with users, friends, and 

interactions, Canonical Polyadic (CP) and Tucker models have proven effective in 

uncovering latent communities through their respective latent factors [17]. 

Additionally, tensor regression based on decomposed features facilitates the 

prediction of links within the network. In the realm of neuroimaging, tensor 

decomposition has been applied to fMRI data, which typically involves four modes - 

voxels, time, subjects, and conditions [18]. CP extraction reveals spatially distributed, 

task-related source signals, while Tucker models identify local brain regions and 

interactions. The versatility of tensor decompositions extends to recommender 

systems, where user-item ratings are represented as a user x item x context tensor. 

Tensor factorization enhances recommendation accuracy by incorporating 

multidimensional effects, surpassing the limitations of traditional matrix-based 

methods. 

Text mining benefits from tensor decompositions as well, particularly in the extraction 

of latent topics and their corresponding word distributions from document-term 

matrices. Furthermore, joint analysis of text and citations using tensors has been 

shown to improve topic coherence [19]. In computer vision, tensor methods prove 

valuable for extracting intrinsic image features for recognition and classification, with 

Tucker models adept at learning multilinear transformations for achieving view and 

illumination invariance. 

Chemometrics, a field dealing with the analysis of chemical data, utilizes CP to 

resolve chemical mixtures from spectrometric data by representing factors as pure 

component spectra and concentrations. Meanwhile, Tucker models excel in 

identifying chemical interactions within complex datasets. To exemplify the practical 

applications of tensor decompositions, CP and Tucker models were applied to two 

distinct datasets [20]. The Enron Email Network, a dataset characterized by email 

senders, receivers, and time modes, underwent CP decomposition to identify latent 

communities and their temporal interaction patterns. The results, as presented in Table 

2, showcase the effectiveness of tensor decomposition in revealing hidden structures 

within the data [21]. Similarly, the application of Tucker models to the Enron Email 

Network extracted key actors and their connections within each community. In the 

context of a brain fMRI study, the dataset comprising voxels, timepoints, and stimuli 

underwent CP decomposition to cleanly separate spatially distributed patterns of brain 

activity corresponding to each stimulus, as outlined in Table 3. Concurrently, Tucker 

models were employed to find localized regions and their interactions in response to 
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different stimuli. These examples underscore the ability of CP and Tucker models to 

derive latent patterns and interactions from multidimensional datasets, offering 

interpretable structure and dimensionality reduction [22]. 

Tensor decompositions, through CP and Tucker models, have demonstrated their 

efficacy in handling diverse and complex datasets across various domains. The ability 

to uncover latent patterns, communities, and interactions makes tensor methods 

scalable and well-suited for mining big data, particularly in situations involving large, 

incomplete datasets where traditional methods fall short [23]. 

Table 2: CP decomposition on Enron email tensor  

Community 1 Community 2 Community 3 
 

Senior 
Executives 

Traders Legal 
Department 

 

Temporal Trends Declining over 
Time 

Spike During 
Crisis 

Peaks on Quarter 
End 

 

 

Table 3: Tucker decomposition on fMRI tensor 

Brain Region A Brain Region B Brain Region C 

Activates for Stimulus 1 Activates for Stimulus 2 Activates for Stimulus 3 

Interacts with Region B Interacts with Region A Interacts with Region C 
 

Computational Aspects 
Tensor decompositions, although powerful for extracting latent features from 

multidimensional data, present intricate computational and algorithmic challenges 

that demand careful consideration. The scalability of tensor methods is a primary 

concern, particularly as they exhibit poor performance when confronted with high 

dimensionality and large datasets. The handling of massive data necessitates the 

utilization of high-performance computing resources, making scalability a critical 

aspect of tensor decomposition algorithms [24]. Another challenge arises from the 

uniqueness and rotations associated with tensor decompositions. The Canonical 

Polyadic (CP) decomposition lacks a guarantee of uniqueness, while the Tucker 

decomposition allows rotational freedom. Efficient algorithms must be designed to 

impose constraints on the solutions, ensuring meaningful and interpretable results. 

Addressing the issues of uniqueness and rotations is crucial for enhancing the 

reliability and applicability of tensor decomposition methods. 

Initialization and convergence represent additional hurdles in the application of tensor 

decomposition techniques. The quality of the obtained results heavily depends on the 

initialization process, and algorithms may become trapped in local optima. To mitigate 

these challenges, it is imperative to develop robust initialization strategies to guide the 

algorithm toward optimal solutions. Overcoming convergence issues is essential for 

ensuring the efficiency and effectiveness of tensor decomposition algorithms [25]. 

Sparse and missing data pose significant challenges in the context of real-world 

datasets. Many real-world datasets exhibit sparsity, with numerous zero entries. 

Tensor decomposition algorithms must be designed to handle sparse and missing data 

effectively, ensuring that the presence of zeros does not compromise the accuracy and 

reliability of the extracted latent features. 
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Model selection is a critical aspect of tensor decomposition, requiring careful 

consideration during the design phase. Choosing the appropriate rank and determining 

the number of components significantly impacts the performance and interpretability 

of the model [26]. Rigorous validation processes are essential to make informed 

decisions about model parameters, ensuring that the tensor decomposition accurately 

captures the underlying structure of the data. Several software tools have been 

developed to facilitate the implementation of various tensor algorithms. Notable 

examples include the Tensor Toolbox in MATLAB, TensorFlow, PyTorch, and 

TensorLy. These tools provide efficient and scalable implementations, allowing 

researchers and practitioners to apply tensor decomposition methods to diverse 

datasets. Leveraging these software tools is crucial for overcoming the computational 

challenges associated with tensor decompositions and enhancing the accessibility of 

these techniques to a broader audience. 

Despite these challenges, tensor decompositions remain exceptionally useful for 

extracting latent structures from complex, multidimensional datasets. Ongoing 

research efforts are focused on addressing the aforementioned challenges to improve 

the scalability, uniqueness, and interpretability of tensor models. The ability of tensor 

methods to fuse information from diverse modes positions them as invaluable tools 

for mining insights from large-scale, complex data. As advancements in 

computational methods continue, tensor decompositions are expected to play a pivotal 

role in unraveling the hidden patterns within massive and intricate datasets, 

contributing to the advancement of various scientific and industrial domains. 

Conclusion 
Tensor decompositions serve as a robust and efficient framework for revealing latent 

patterns within multidimensional big data. This method involves representing higher-

order arrays as multilinear models, facilitating compression and dimensionality 

reduction while preserving crucial structural information. One prominent technique 

within tensor decomposition is the Canonical Polyadic (CP) decomposition, which 

stands out for its ability to extract interpretable components and interactions. Through 

CP decomposition, the original tensor is approximated as a sum of rank-one tensors, 

each corresponding to a unique component [27]. This decomposition not only aids in 

reducing the dimensionality of the data but also provides insights into the underlying 

structures and relationships present in the dataset. In addition to CP decomposition, 

the Tucker decomposition represents another noteworthy approach in tensor analysis. 

Unlike CP, Tucker allows for more flexibility by introducing a core tensor that models 

interactions among different modes of the original tensor. The core tensor captures the 

shared information among these modes, offering a more nuanced representation of 

complex relationships within the data. The versatility of the Tucker decomposition 

lies in its ability to adapt to various data structures, making it a valuable tool for 

uncovering hidden patterns in real-world datasets with diverse tensor structures. 

The combination of CP and Tucker decompositions enhances the analytical 

capabilities for extracting meaningful insights from multidimensional data. While CP 

excels in isolating individual components and their interactions, Tucker provides a 

broader perspective by considering the interplay between different modes. This 

synergy creates a comprehensive toolkit for researchers and practitioners seeking to 

understand the complex relationships embedded in large-scale datasets [28]. 

Moreover, tensor decompositions find practical applications in a wide range of fields, 

such as image and signal processing, neuroscience, and social network analysis. In 
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image processing, for example, tensors can represent multi-dimensional pixel arrays, 

and tensor decompositions aid in extracting meaningful features and patterns. 

Similarly, in neuroscience, where data often exhibits complex interactions across 

multiple dimensions, tensor decompositions can reveal hidden structures and 

relationships, contributing to a better understanding of brain function [29]. 

The utility of tensor decompositions becomes particularly evident in the context of 

big data, where datasets are characterized by high dimensionality and intricate 

interdependencies. By employing tensor decomposition techniques, analysts can 

effectively reduce the dimensionality of these datasets, facilitating more manageable 

and interpretable analyses. The inherent ability of tensor decompositions to capture 

essential information while discarding redundant details is crucial for handling the 

challenges posed by the ever-increasing size and complexity of contemporary datasets 

[30]. We have highlighted diverse applications of tensor methods in areas ranging 

from neuroscience to social networks and recommender systems. These demonstrate 

their effectiveness in finding low dimensional structure and performing knowledge 

discovery on large datasets with complex interactions between modes. Ongoing 

algorithmic advances are improving the capability to handle massive, sparse data. This 

makes tensor decompositions extremely valuable in the current era of 

multidimensional big data across domains [31]. 

Tensor methods enable mining latent relationships and interactions that often escape 

conventional matrix-based analysis. By leveraging tensor algebra and 

decompositions, we can uncover previously unknown structures and insights in large, 

multidimensional datasets. This helps derive actionable intelligence and supports 

predictive modeling. Tensor decompositions will continue to be indispensable tools 

for extracting knowledge from the wealth of big data being generated in diverse 

settings. 
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