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Abstract  
The increasing reliance on cloud-based applications presents significant challenges in 

optimizing resource management while maintaining high levels of Quality of Service 

(QoS). This paper proposes a multi-objective optimization framework that leverages a 

deep learning-based surrogate model, specifically a Graph Neural Network (GNN), to 

balance energy consumption, thermal management, and QoS in dynamic cloud 

environments. The framework uses the Non-dominated Sorting Genetic Algorithm 

(NSGA-II) to explore trade-offs between these competing objectives, providing a 

scalable solution for real-time resource allocation. Evaluation results demonstrate 

significant improvements, with energy consumption reduced by up to 15%, thermal 

inefficiencies mitigated by 10%, and SLA violations decreased by 18% compared to 

baseline models. These findings highlight the effectiveness of the proposed framework 

in optimizing cloud resource management while maintaining system performance and 

sustainability. This study paves the way for further advancements in cloud optimization 

through the integration of AI-driven approaches. 
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Introduction  
The rapid proliferation of cloud-based applications across various industries has led 

to an unprecedented demand for computational resources and optimized resource 

management [1], [2]. As businesses increasingly rely on cloud infrastructures to 

deliver services, ensuring the efficient use of resources while maintaining high-quality 

service delivery becomes paramount. Cloud computing, with its scalable, on-demand 

nature, provides a flexible environment for hosting applications, but it also presents 

new challenges. Among these, the need to balance resource efficiency and maintain 

Quality of Service (QoS) stands out as a critical concern for both service providers 

and users [3], [4]. QoS in cloud environments is defined by key performance metrics 

such as latency, availability, and response time, all of which directly impact the user 

experience and satisfaction. 

QoS plays a pivotal role in determining the performance of cloud-based applications. 

Latency, which refers to the time delay between a user request and system response, 



Journal of Big-Data Analytics and Cloud Computing  
VOLUME 6 ISSUE 2 

[24] 

must be minimized to ensure a smooth user experience, particularly in real-time 

applications such as video streaming, online gaming, and financial services. 

Availability, or the uptime of cloud services, is crucial for ensuring continuous access 

to applications, while response time measures the efficiency of the system in 

processing requests within the expected timeframe. As cloud service providers strive 

to meet stringent Service Level Agreements (SLAs), optimizing these QoS parameters 

has become increasingly important [5], [6]. 

Simultaneously, the growing computational and storage demands of cloud 

applications have led to an increase in energy consumption within cloud data centers 

(CDCs). Energy-efficient resource management is critical, as the rising number of 

servers not only drives up operational costs but also contributes to a significant 

environmental footprint. Cloud providers face the challenge of reducing energy 

consumption without sacrificing QoS, a balance that becomes even more complex 

when factoring in the thermal management of servers. High server utilization 

generates excessive heat, which must be efficiently managed through cooling systems, 

adding further energy overheads. Thermal inefficiencies can lead to thermal hotspots, 

degrading hardware performance and shortening equipment lifespan, thereby 

increasing operational costs [7]. 

Addressing these intertwined challenges requires a holistic approach that can 

simultaneously optimize energy efficiency, thermal management, and QoS. 

Traditional resource management techniques often fail to capture the dynamic and 

interdependent nature of these objectives, resulting in suboptimal performance. Multi-

objective optimization has emerged as a promising approach for addressing these 

trade-offs. By treating energy, thermal, and QoS metrics as concurrent optimization 

goals, multi-objective techniques allow cloud systems to explore a range of possible 

solutions, finding the optimal balance between competing objectives. 

This study introduces a novel multi-objective optimization framework designed to 

address the inherent challenges of balancing energy consumption, thermal 

management, and Quality of Service (QoS) in cloud-based applications. By leveraging 

a deep learning-based surrogate model built on a Graph Neural Network (GNN), the 

framework efficiently predicts trade-offs between these competing objectives and 

facilitates real-time resource allocation. The integration of a Non-dominated Sorting 

Genetic Algorithm (NSGA-II) further enhances the framework's capability to explore 

a wide range of solutions, allowing cloud administrators to optimize system 

performance under dynamic conditions. This approach significantly reduces energy 

consumption, mitigates thermal hotspots, and improves QoS metrics such as latency 

and SLA violations compared to traditional methods. Through this contribution, the 

framework addresses the scalability and real-time decision-making challenges that 

hinder existing optimization approaches in cloud environments. 

RELATED WORK 
In the field of cloud computing, optimizing resource allocation, energy efficiency, and 

Quality of Service (QoS) has been a key focus of research. Traditional methods such 
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as heuristic and meta-heuristic algorithms have been widely applied for resource 

allocation, with goals like reducing energy consumption and minimizing SLA 

violations. Techniques like Virtual Machine (VM) placement and consolidation aim 

to improve resource utilization and energy savings but often fail to fully meet QoS 

requirements, resulting in service disruptions. For instance, studies using energy-

aware multi-objective optimization approaches for VM placement demonstrated the 

ability to balance energy efficiency and system performance, reducing SLA violations  

[8]. 

AI-based methods are increasingly used to address these multi-objective challenges. 

One promising approach integrates hybrid optimization algorithms, such as the Multi-

Objective Hybrid Fruit Fly Optimization (MOHFO), to balance energy efficiency, 

resource wastage, and SLA compliance. MOHFO has shown improvements over 

traditional algorithms in dynamic VM deployment and consolidation for better 

resource provisioning [9]. Similarly, a dynamic VM placement strategy employing 

evolutionary multi-objective algorithms optimized energy consumption and resource 

wastage, achieving a 57% reduction in migration energy [10]. VM consolidation 

algorithms have also been explored to improve energy efficiency by consolidating 

workloads onto fewer physical machines, reducing operational costs. However, these 

methods face challenges like maintaining QoS, especially as VM migrations can 

introduce delays and increase energy usage [11] AI-driven methods, including deep 

learning surrogate models, have been proposed to better predict and balance energy, 

thermal, and QoS requirements in real-time dynamic environments [12].  Despite the 

potential of AI techniques, current methods still have limitations, including the high 

computational complexity required for real-time multi-objective optimization. Many 

AI-based methods also struggle with fluctuating workloads and power demands, 

which further complicate maintaining consistent QoS. For example, optimization 

algorithms for VM placement that also consider communication bandwidth and 

network efficiency have shown some success, but scalability remains a concern [13]. 

In addition to the aforementioned research, numerous other studies have further 

advanced the field of multi-objective optimization for cloud computing. For example, 

a comprehensive review of meta-heuristic resource allocation techniques for 

Infrastructure as a Service (IaaS) environments highlighted improvements in energy 

consumption, cost efficiency, and QoS through meta-heuristic approaches such as 

genetic algorithms and Particle Swarm Optimization (PSO) [14]. Additionally, a 

framework leveraging Software-Defined Data Centers (SDDCs) was shown to 

optimize virtual machine deployment and bandwidth allocation, achieving significant 

energy savings with minimal QoS violations [15]. Another significant contribution is 

a multi-objective optimization method aimed at minimizing energy consumption and 

network delays in cloud data centers. This method, based on genetic algorithms, 

addresses the challenges of optimizing both power consumption and resource wastage 

while ensuring QoS [13].  Despite advancements in cloud optimization through meta-

heuristic and AI-driven models, existing approaches still face key limitations, such as 

limited scalability, slow adaptability to dynamic workloads, and challenges in 

balancing multiple objectives like energy efficiency, thermal management, and QoS. 
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Most current models are either computationally expensive or operate on static 

datasets, which hinders their real-time applicability in large, heterogeneous cloud 

environments. This paper addresses these gaps by introducing a deep learning-based 

surrogate model integrated with multi-objective optimization, enabling real-time 

trade-off balancing between energy, thermal, and QoS metrics, making it more 

scalable and adaptable for dynamic cloud settings. 

PROPOSED MULTI-OBJECTIVE OPTIMIZATION  

The proposed multi-objective optimization framework is designed to balance energy 

efficiency, thermal management, and Quality of Service (QoS) in cloud-based 

applications. It integrates a deep learning-based surrogate model with a multi-

objective optimization algorithm to predict system behavior and guide decision-

making in real time. This approach enables the system to explore trade-offs between 

competing objectives, such as energy consumption, thermal efficiency, and service 

quality, thereby optimizing resource allocation and task scheduling in cloud 

environments. Optimization framwork is shown in Figure 1. 

 

Figure 1 Components of the multi-objective optimization framework for 
cloud resource management. 

System Architecture 

The architecture of the framework is composed of three main components: input data 

collection, the deep learning-based surrogate model, and the multi-objective 

optimization algorithm. The input data is collected from various metrics that 

characterize the operational state of the cloud infrastructure and application 

performance. These metrics are categorized into three groups. The first group, energy 

metrics, includes data on power consumption from servers and cooling systems, as 

well as CPU, memory, and network activity. These metrics are crucial for estimating 

the energy footprint of the cloud workload. The second group, thermal metrics, 

consists of temperature readings from cloud hosts, which are vital for detecting and 

preventing thermal hotspots that can degrade performance and increase cooling costs. 

Finally, QoS metrics such as latency, response time, and SLA compliance rates are 

monitored to ensure that the framework maintains a high standard of service while 

optimizing energy and thermal performance. The collected data serves as input for the 

surrogate model to facilitate real-time prediction and optimization. 
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Deep Learning-Based Surrogate Model 

At the core of the framework is the deep learning-based surrogate model, which 

provides an efficient approximation of system performance across the three 

objectives. The model is designed to reduce the computational complexity of 

evaluating every potential scheduling or resource allocation decision, enabling 

quicker optimization. The surrogate model is built using a Graph Neural Network 

(GNN), which effectively captures the relationships between tasks and cloud 

infrastructure components. Each task and cloud host is represented as a node in a 

graph, with edges representing the resource dependencies and interactions between 

them. This representation allows the model to capture complex interdependencies, 

such as how tasks share resources and how this affects the energy and thermal 

characteristics of the system. The GNN layers in the surrogate model perform 

message-passing operations to aggregate information from neighboring nodes, 

helping the model learn patterns of resource consumption, thermal behavior, and QoS 

trade-offs. The model is trained using historical data, which includes information on 

past task allocations, energy consumption profiles, thermal dynamics, and QoS 

performance. By minimizing the mean squared error (MSE) between predicted and 

actual values, the model learns to accurately predict the impact of different scheduling 

and allocation decisions. Once trained, the surrogate model can predict system 

behavior with high accuracy in real time, significantly reducing the need for expensive 

simulations or physical testing of multiple configurations. 

Optimization Algorithm 

The multi-objective optimization algorithm uses the predictions from the surrogate 

model to explore the trade-offs between energy consumption, thermal efficiency, and 

QoS. The optimization process is guided by Pareto-based optimization, which seeks 

to identify a set of optimal solutions that represent different trade-offs among the 

objectives. The optimization is carried out using the Non-dominated Sorting Genetic 

Algorithm (NSGA-II), a multi-objective evolutionary algorithm known for its ability 

to handle conflicting objectives efficiently. The optimization process begins with an 

initial population of resource allocation configurations, with each configuration 

representing a possible solution that includes task assignments and resource allocation 

decisions. These configurations are evaluated using the surrogate model, which 

predicts energy consumption, thermal profiles, and QoS performance. The best-

performing configurations are selected based on Pareto dominance, and crossover 

and mutation operations are applied to generate new configurations. This process 

iterates over multiple generations, refining the population until an optimal set of 

solutions is identified. The output of the optimization process is a Pareto front, which 

represents a set of non-dominated solutions that offer different trade-offs between 

energy efficiency, thermal management, and QoS. These solutions allow cloud 

administrators to make informed decisions based on their specific priorities, such as 

minimizing energy consumption, reducing thermal load, or maximizing QoS. For 

example, one solution may achieve minimal energy consumption with a slight 

increase in response time, while another solution may prioritize low latency at the 
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expense of higher energy usage. The structure of  the optimization is shown in Figure 

2. 

 

Figure 2 Structure of the multi-objective Optimization Algorithm used in 
the framework. 

The proposed framework is designed to be integrated into existing cloud management 

platforms, interacting with the resource scheduler to provide real-time 

recommendations for task placement and resource allocation. It is scalable and 

adaptable, capable of operating in both small-scale cloud environments and large-

scale data centers. By leveraging deep learning and evolutionary algorithms, the 

framework efficiently balances energy, thermal, and QoS objectives, improving cloud 

infrastructure sustainability while maintaining high service quality. 

RESULTS 

 

Figure 3 omparison of Energy Consumption and Thermal Management 
across Task Loads 

This section presents the results of the proposed multi-objective optimization 

framework, focusing on energy efficiency, thermal management, and Quality of 

Service (QoS) across varying task loads. The evaluation compares the framework with 

baseline models, including a Genetic Algorithm (GA) and Reinforcement Learning-
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based Scheduling (RLS). Key performance metrics include energy consumption, 

temperature management, and the rate of SLA violations, as well as response times. 

Energy Efficiency and Thermal Management 

Energy Efficiency: Figure 3 illustrates the energy consumption as the number of tasks 

increases for the proposed framework compared to GA and RLS. It is evident that the 

proposed framework consistently outperforms the baseline models, especially as task 

load scales. For instance, at 500 tasks, the proposed framework reduces energy 

consumption by approximately 15% compared to GA and 12% compared to RLS. This 

reduction is attributed to the deep learning-based surrogate model that optimizes 

resource allocation and predicts the energy cost of different scheduling decisions. 

Thermal Management: Figure 3 highlights the thermal efficiency of the system by 

comparing average temperatures across varying task loads. Similar to energy 

consumption, the proposed framework manages thermal conditions more effectively 

than the baseline models. At a task load of 500, the proposed framework maintains a 

temperature reduction of about 10% compared to GA and 8% compared to RLS. This 

reduction in temperature is achieved through the dynamic task allocation, which 

prevents thermal hotspots and evenly distributes heat across servers. The deep 

learning-based surrogate model integrates thermal metrics into the decision-making 

process, further improving thermal management. 

Additionally, Figure 4, a heatmap of SLA violation rates, provides insights into the 

distribution of violations across servers and time slots. The results show that servers 

under the proposed framework experience fewer violations, which is closely linked to 

more efficient task distribution. 

 

Figure 4 SLA Violation Heatmap 
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Quality of Service (QoS) 

Figure 5 compares the percentage of SLA violations and response times across the 

three models. The proposed framework exhibits a significant reduction in SLA 

violations, especially as task load increases. At 500 tasks, the proposed model reduces 

violations by approximately 18% compared to RLS and 14% compared to GA. This 

improvement is due to the model's ability to anticipate and prioritize tasks that are 

likely to violate SLAs, ensuring that resources are allocated accordingly. 

The response time comparison, depicted by the green and blue dashed lines in Figure 

4, shows that the proposed framework not only reduces SLA violations but also 

improves response times. The framework achieves an average reduction in response 

time of 20 milliseconds compared to GA and RLS. This improvement is facilitated by 

the multi-objective optimization algorithm, which efficiently balances energy, thermal 

conditions, and QoS metrics to avoid performance degradation.The ability to maintain 

low SLA violations while simultaneously reducing response time demonstrates the 

robustness of the proposed framework in dynamic and large-scale cloud 

environments. 

 

Figure 5 Comparison of SLA Violations and Response Times across different 
scheduling algorithms (Proposed Framework, GA, and RLS) for varying 
numbers of tasks. 

CONCLUSION  

This study proposed a multi-objective optimization framework designed to balance 

energy efficiency, thermal management, and Quality of Service (QoS) in cloud 

computing environments. By integrating a deep learning-based surrogate model, 

specifically a Graph Neural Network (GNN), with the Non-dominated Sorting 

Genetic Algorithm II (NSGA-II), the framework efficiently predicts and optimizes 

resource allocation while considering complex interdependencies between energy 

consumption, thermal dynamics, and QoS metrics. The framework provides a robust 
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solution for dynamic and large-scale cloud infrastructures. The experimental results 

demonstrate that the proposed framework significantly reduces energy consumption 

by up to 15%, improves thermal management by 10%, and decreases SLA violations 

and response times when compared to traditional baseline models, such as Genetic 

Algorithms (GA) and Reinforcement Learning-based Scheduling (RLS). These 

improvements highlight the framework’s ability to optimize multiple objectives 

simultaneously, offering cloud administrators a set of Pareto-optimal solutions to 

prioritize based on their operational goals. 

The integration of a deep learning surrogate model also reduces the computational 

complexity associated with real-time decision-making, making the system scalable 

and adaptable to a wide range of cloud environments. This contribution enhances the 

sustainability, performance, and reliability of cloud infrastructures, paving the way for 

more intelligent resource management in the future of cloud computing. 
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